设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 6573|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现# @# y* f2 D& S9 Y# H4 A
globals
  [: `8 _2 m7 s8 A1 c[& @) B! P( w+ q1 A  X
  max-grain    - n" M! G& y# t8 x
+ W/ Y9 |" X7 _! ~+ i
]: }2 S3 p, \% [

. s: r9 R. W5 V: X# A: apatches-own+ W, u6 |; I& e) ?
[
! i% B0 j- V7 E  M) s  grain-here      
' Y% ~! a* Z: V* e; o4 I. N( R  max-grain-here  & ?6 r! H# q( x: C1 C% T
]
5 n" {" w2 R1 z% m9 n" m& ~- A% b) T* t) t7 p+ z( p' |1 Q, U
turtles-own: X1 w2 J0 o" @0 R
[
8 [: L' b' h7 q1 ^: R  }3 c  age              
$ n4 b5 ?& b' `5 \4 I  Q: i4 h  wealth         
! i$ l4 Q! M' c6 |, l9 |. V  life-expectancy  % u# O4 F0 a, ?7 I- p" X
  metabolism      
6 f. c  w0 L" `2 H  vision
0 L9 M! z' O8 [" }& C% R  inherited         ) m3 O( k+ F$ x4 q/ I+ D$ ]
]6 K2 h; M" N1 y* m; b; ]5 P
0 k6 M/ w/ y1 J6 }& @$ @6 p- w6 ~2 |

. d/ m0 `! T8 w# F7 Rto setup8 e5 Z+ v* v. e+ {) Q# `. W
  ca
+ t, w  K5 W# W/ @" K& I3 P  set max-grain 50
# a3 k4 e' w, s2 `/ }  setup-patches2 r( s, Q0 v# b1 S2 k4 ~& ?
  setup-turtles/ Z) u* L  D3 g$ I, y; P. N
  setup-plots
1 B0 \0 s& y' I6 _+ a  Z, Q  update-plots
% ]6 i! ~+ \) `$ Y  Z" _1 I" cend
: m$ ^$ Y. T+ V4 n6 @to setup-patches
# A" u/ g( S& e6 g  ask patches! ~4 ^+ \# j3 o4 W; ^9 R# O, Z
    [ set max-grain-here 0
& C4 B/ Q4 k% a# V, V      if (random-float 100.0) <= percent-best-land$ N! h# @' T, G. H, \2 L
        [ set max-grain-here max-grain
' j5 l( S* d% [, `! Z5 A/ U          set grain-here max-grain-here ] ]+ ?8 l+ ?- X# d  H" v6 E
  repeat 5
1 ?" D: Y+ S  b; Y- M7 ^, U    [ ask patches with [max-grain-here != 0]
/ f- M6 W( D6 o$ O  O        [ set grain-here max-grain-here ]- q1 p, v% P+ U6 k; e- V& X
      diffuse grain-here 0.5 ]2 ?$ E7 X' A6 F7 G! p5 o- m. k3 `) J
  repeat 10
2 b7 |1 a( ?7 I    [ diffuse grain-here 0.5]         
3 [. z4 b4 ?" }+ M" @* \& ?  ask patches
0 V; H! d- k' Y    [ set grain-here floor grain-here   
  P, [  k" q/ S2 W- y8 S& V" M5 J      set max-grain-here grain-here      
# j+ @: h3 d' a' ]3 O% h! C      recolor-patch ]
, ]. t6 E7 u, z  e3 L2 |! x* vend
9 D! Z, {8 Y$ i, G3 Q/ V+ Jto recolor-patch  4 Q- Z6 @; w& Y( @" f! G) G0 v
  set pcolor scale-color sky grain-here 0 max-grain
! K( A- e: H7 c5 g6 aend
# w6 o6 ]8 f' ]/ j. ?3 Qto setup-turtles4 l% a3 i) E# [9 k5 H; K6 E
  set-default-shape turtles "person"+ C7 N9 j8 u/ v  x4 f
  crt num-people* F- F. K: ^3 ], u3 O9 g- y
    [ move-to one-of patches  
4 g2 x9 b+ V& m& m& b  \      set size 1.5  & {( A9 k0 W1 p0 O  l4 N) l3 b
      set-initial-turtle-vars-age
; h' F4 _0 L! I! q+ G; h7 j      set-initial-turtle-vars-wealth" H  ^- R$ `, f- s, z3 [  s
      set age random life-expectancy ]& m) y0 f) e( L$ z
  recolor-turtles' l, \0 V  _' V- C- q" U
end# b  t& e7 L) j2 i3 T. u

2 U5 ^8 d! y& u2 [* Q+ @to set-initial-turtle-vars-age  i& B1 ^$ [2 M/ o8 X0 d6 w2 a# O
let max-wealth max [wealth] of turtles
5 R& r9 |4 W  q5 y1 I& n+ _   
5 _: [* C, ^. |0 a( L     ifelse (wealth <= max-wealth / 3)
9 F$ F7 ]; ?8 o- g: S, _        [ set color red : o* H: S; o( Z. v
          set age 0
* U/ @3 i3 I7 I: j2 Y2 T& O          face one-of neighbors4 : U/ M" m( _; j2 U. a
          set life-expectancy life-expectancy-min +; B/ p$ g5 d4 q6 K5 @3 G# Y
                        random life-expectancy-max
9 i, ^  ^9 D' n          set metabolism random 1 + metabolism-low
  }" c( I1 g8 O$ O, n$ ^          set wealth metabolism + random 30: I' d# a. U& E' `/ o
          set vision 1 + random max-vision
0 w5 _. R6 e. E2 R+ @8 r             set wealth  wealth +  Wealth-inherited-low ]1 d/ y% d4 D3 ~/ H+ l5 A
        [ ifelse (wealth <= (max-wealth * 2 / 3))  d% s, H/ H& D6 ?  Z. b7 K
            [ set color yellow ' |8 G: `: S1 ~: T
              set age 0
" p! ?% o9 m+ \9 {7 y( A' r              face one-of neighbors4 4 f; C7 _, \0 U  g
              set life-expectancy life-expectancy-min +
) ~; ?! U* O, ]. i' E9 s8 p: W                        random life-expectancy-max + 1
$ x- y, J0 w: H/ p              set metabolism  1 + random metabolism-mid/ `7 y; {$ |* b2 s2 ]3 a: d
              set wealth metabolism + random 30
3 j- q: p. R8 [. O# ^# T              set vision 3 + random max-vision- e$ s) m+ E& G3 G) m4 m
                set wealth  wealth + Wealth-inherited-mid]. ?- `4 L. P: ]* J8 J9 X
            [ set color green
, A2 R8 j  D& y( Z              set age 0! A9 c4 n5 A6 S3 k/ P# N
              face one-of neighbors4
5 Y6 z. b0 t# M$ f) A6 x              set life-expectancy life-expectancy-min +, C7 P( J3 T0 }9 a
                        random life-expectancy-max  + 24 C( s/ V0 @/ k& F) L! H. S
              set metabolism 2 + random metabolism-up8 F, `& D5 d6 P
              set wealth metabolism + random 304 O8 y, b4 d2 s. R
              set vision 3 + random max-vision/ }; ?; W4 N3 p' h) K4 n
              set wealth  wealth + Wealth-inherited-up ] ]
1 Q' R; v, R- n/ D( X2 H3 r9 h8 ? # m; y! O3 a4 r6 |# U, x3 a) `) D
end) ^) g. }, _+ T
to set-initial-turtle-vars-wealth
* e4 ~% e% b% w) E0 Q7 g$ V* |" ? let max-wealth max [wealth] of turtles. Y$ _6 f9 n. ?9 J8 e
          set age 0
$ @$ d0 ~5 Y( C          face one-of neighbors4
7 G1 B" a* b8 h) j+ ]' X          set life-expectancy life-expectancy-min +
8 i3 n. T0 A( U4 \. l* X  ^, l( _& o" [                        random life-expectancy-max 7 i% m3 o) M  r/ q! ~1 \  \' X
          set metabolism 1 + random metabolism-up
! A  J  ~2 v/ {5 y/ Z# j0 D5 \1 T          set wealth metabolism + random 30
* E+ B3 M- _+ J" v/ q          set vision 1 + random max-vision
6 f* x' x) _6 X! ]; v. d7 ]end% w0 n/ ?- F/ ]" X; g3 @
to redistribution6 m( N8 ~% H7 S& V! @
let max-wealth max [wealth] of turtles1 u: G  ~. s9 s# z$ b" U) M
let min-wealth min [wealth] of turtles3 Z) j& G# I1 C
if (wealth <= max-wealth / 3)1 \. W$ |* L: j# t% c' f
[set wealth  wealth + Low-income-protection ]
3 K8 _3 l4 W' q& T1 ^. Wend% v1 }" r* @2 u
          % P7 i* E5 k1 l! M) L
to recolor-turtles9 G$ A9 W1 ~7 L% f- m1 B, E
  let max-wealth max [wealth] of turtles; n$ @6 w2 m9 t3 g+ y1 g. J
  ask turtles& i; P/ ^" r) B/ |  G
   [ ifelse (wealth <= max-wealth / 3)
! [  }9 ^' [: \8 c9 m4 S' s% H        [ set color red ]$ r3 h) `: o. d
        [ ifelse (wealth <= (max-wealth * 2 / 3))- J4 o0 d) e1 {. `# t8 X
            [ set color yellow ]
! B3 q; c: [, m4 Z3 k- ~$ w            [ set color green ] ] ]6 ?. B- V; o) i- r" j4 S; p/ q' Q
ask turtles [ifelse show-wealth?
- |! r# e! u+ S3 m) ^4 W* A    [ set label wealth ]- n0 V; A$ I8 g
    [ set label "" ]]
: p" x; ~- X- P- Aend1 s4 A+ G" l6 _" R2 w! S( a' f

1 a* [. _8 c4 t4 \to go
5 X$ X+ H! r! K8 x' K3 B  ask turtles
/ G7 @% i: s. e0 [. W/ a) p) m    [ turn-towards-grain ]  ! `- _; r3 Q' G( ~
  harvest. v0 {) u1 w2 ]. M8 t
  ask turtles' \5 @/ i) T% L7 L$ n2 T5 k5 G( F8 L
    [ move-eat-age-die ]
" j3 |1 T! C" V. w  recolor-turtles0 L- B3 K8 [" n$ u) X" ~' n
  if ticks mod grain-growth-interval = 0
% ]6 X* g, ^% t8 V  g. V2 M$ x* Y    [ ask patches [ grow-grain ] ]; X( ?+ B2 C# [) Q# k8 Z
   . \9 X. U2 T- l* m
  if ticks mod 11 = 03 ]1 L" ]/ B+ ]& U8 n
  [ask turtles7 @0 T. O) E( F* R
  [ redistribution ]]8 T# J3 @0 T( T& B
  if ticks mod 5 = 0  g% r; X! o0 I% v3 G/ Z, c$ `
   [ask turtles
" R4 e/ ^4 `  o6 D& L  {) N3 v; p  [ visions ]]( ]' b& s% n3 t3 w% l. ~1 a2 g& H  L
  tick
# O: s; T0 f2 O, U3 F" |6 w( l3 [  update-plots
) C% O( t) u) t( r& yend/ ?, Y8 ^9 i% U+ U2 d- s
to visions3 B/ o) l' @1 b3 B  v
set vision vision + 1
2 j5 w, d) }* K" o% ^0 i) ^1 ^end& F/ C" d) D: ?6 H. z

% C9 B2 D+ k& g# D& o  `7 M* d& E. Q9 s. O9 s' o) v

2 d4 ^9 S% q) `: C  h  J( C7 tto turn-towards-grain  8 C! [3 c9 ~9 ^7 z
  set heading 0
' g& N8 G! l4 a, o% B  let best-direction 0" p& v/ [$ p- Z$ m
  let best-amount grain-ahead
( Y; m  P* \6 y6 s  set heading 90$ h9 l& \; s9 t6 p* U( y2 B
  if (grain-ahead > best-amount)% o9 w3 S2 g' C1 F
    [ set best-direction 90: P' _9 x$ ]3 d  \  B$ W
      set best-amount grain-ahead ]
. N# F! G; k% ^8 R4 r& _- p0 u. Q  set heading 1809 q0 y$ n, C- x8 {9 T
  if (grain-ahead > best-amount)
6 k' W* h1 j  {    [ set best-direction 1805 ~( z4 a1 c2 C" Y
      set best-amount grain-ahead ]
/ N! [. x0 ^$ W  ]2 A  set heading 270' c- {4 b: a2 }2 ?# ~( Q% ?& f
  if (grain-ahead > best-amount)
9 l" Q6 p" q3 I' q4 l7 L    [ set best-direction 270% v: A# c* g6 m, ]/ [) z0 S
      set best-amount grain-ahead ]
0 y4 a) e# `' n0 G+ f7 p, K- f  set heading best-direction
7 V; ?+ {. V3 Yend
( U/ ?/ G4 d# }, `3 c" o8 D  Q3 Z' N1 Y

' f: z5 J3 q0 T6 O0 t8 j' sto-report grain-ahead  7 {+ g$ p( K8 c: g4 q
  let total 0
; n% m9 h: P+ L0 t  let how-far 1) R3 q- G8 `. V
  repeat vision
2 o. J! Q& S  g: \    [ set total total + [grain-here] of patch-ahead how-far1 t7 d" O/ T3 @% n# p$ J6 x# g
      set how-far how-far + 1 ]
# z8 o  q7 J& D- T3 H! ^0 [7 ?  report total6 f1 C. L% r, E) F- X
end" K/ ^6 A1 y* C) C4 y. Y3 f: |

' Y4 W# y6 T( K+ s  z1 Eto grow-grain
$ f3 y$ w0 c/ i! s! l  if (grain-here < max-grain-here)3 F7 J4 C" t( c. h2 {" ?
    [ set grain-here grain-here + num-grain-grown9 A% x6 Z6 W: t  v6 U  e1 K
      if (grain-here > max-grain-here) 2 g( X3 X4 ~% u' L9 n6 y6 B7 a
        [ set grain-here max-grain-here ]% i4 V( Y9 c  x0 S* P/ u' K# y
      recolor-patch ]! ^7 ]3 r% z  N, y
end8 E; ^; u1 B8 U; H6 \
to harvest( z1 G* A2 C! m/ c& v
  ask turtles
0 ]4 U+ ^# |* E# C: A4 v7 p    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
$ N- g5 ?9 ]! y/ w  I9 R  ask turtles
" a; _7 R# X$ q- X    [ set grain-here 0$ i5 k  [. a/ O' M: V+ G( ~
      recolor-patch ]
  z" g: j9 U" h9 ]  , d: t! x" ]2 ^# ?- K# C% ~
end
* Z8 g6 z6 E8 w$ f% s2 v$ k6 G9 t. T+ X1 r& K- s% J# a; p
to move-eat-age-die  8 n$ p: t& y: x  ^5 @5 E
  fd 19 p' v( `/ r, k' h: c
  set wealth (wealth - metabolism)( D* b0 U; p1 D% ]0 Q" F7 W: U
    set age (age + 1)# z9 A. R$ _& o0 ?/ \
  if (age >= life-expectancy)
6 C$ m! K8 W( C    [ set-initial-turtle-vars-age ]9 W7 w; z' u/ Y" x1 Q) a
  if (wealth < 0)
: y2 E/ e- T$ a* e6 K5 m& \3 l    [ set-initial-turtle-vars-wealth ]  ?, Z1 H: T4 R/ O+ j( [4 x
   
( k$ p: j. D/ _2 m3 Yend% @7 B1 I+ v1 k* u4 b$ \

# |2 S; I5 S3 x: S3 g- n& n+ `6 @: @% }" E) O# O* Q
to setup-plots: O* |" S+ w% b! B' I
  set-current-plot "Class Plot"# N' a! s+ f6 c
  set-plot-y-range 0 num-people
7 S2 S% y* n. V5 F. e1 C  set-current-plot "Class Histogram"
8 K) ~6 M9 x: ^7 B% @% F  set-plot-y-range 0 num-people( @9 }8 N8 X* u, @  a' C# U" P
end: n6 Z# f3 w6 Q2 O2 j- P

7 }8 z# ]9 U! q/ _to update-plots
7 ~+ n8 w, b+ s1 z8 s. f6 v  update-class-plot5 G+ J9 n/ {' Q
  update-class-histogram$ k3 a! q* p+ K8 i3 H! v
  update-lorenz-and-gini-plots
- z) L  {, y- ~' L7 aend* U, T% J: j$ _0 S

5 h1 f8 S& A0 N! r. `! [7 Oto update-class-plot
  C" Z" I9 k3 p: \  set-current-plot "Class Plot"
8 d  Q$ p: d* b; T, N  set-current-plot-pen "low"1 v2 `- k: D, v
  plot count turtles with [color = red]
# K5 T+ }9 A0 \4 [$ e- U( H  set-current-plot-pen "mid"
- G+ L3 _# C2 m6 [  plot count turtles with [color = yellow], A" A9 R3 d/ }& j9 Q" u
  set-current-plot-pen "up"
( |$ K6 \) i/ U; g0 s6 V  plot count turtles with [color = green]
/ R1 y7 ]4 w2 @+ Oend. N7 h' _1 c) Z! [( K
1 _, O2 u* ^) u
to update-class-histogram2 O; Y% g: W" Y, F9 L
  set-current-plot "Class Histogram"
% B% e3 d" f- H: N6 Q- G  plot-pen-reset
/ A$ d4 J# }! c5 i- E  set-plot-pen-color red* }- B3 F0 Q  T& a& s
  plot count turtles with [color = red]
( G3 Y( n( q( X5 d7 f& }2 X. c  P% r; Z- A  set-plot-pen-color yellow- j8 z' E9 M( Q. h6 D
  plot count turtles with [color = yellow]7 w" p7 A+ i& s
  set-plot-pen-color green
+ i2 K, g7 Y$ z5 Q. V6 [  plot count turtles with [color = green]
" b1 V% I0 w& f2 Y8 Uend' R! W* P$ d# |# Q( M* {7 u1 G
to update-lorenz-and-gini-plots
9 w2 H' }2 V' O% L  set-current-plot "Lorenz Curve"* m# k4 }, G7 q& f8 X
  clear-plot
  S1 y6 M0 r! p# Z/ J
* J7 i/ r9 w! J4 |  set-current-plot-pen "equal"
+ j: O. ^1 M" J6 t7 {3 ?% y  plot 0  O% W+ Z3 A3 c6 H8 |3 H
  plot 100
- s; h4 ]. d+ Q  g
& F6 g5 M' G( B* j& ^6 t' |. R  set-current-plot-pen "lorenz"
4 u& c6 v$ @" w8 ]9 ], h  set-plot-pen-interval 100 / num-people
; l! Y# D" R' b, J* {  plot 0# H. d  {# d; k/ \% @

5 g! u( j, `% C0 ?( D: p  let sorted-wealths sort [wealth] of turtles" {" a& E8 [& J% p* K2 c
  let total-wealth sum sorted-wealths0 T0 Y* M2 b7 X! k# e/ {- ?
  let wealth-sum-so-far 0
' k5 {( P; }+ h& K  let index 0, t5 N8 E0 K! B
  let gini-index-reserve 0
3 t4 u0 G9 I& I+ S9 j& E' |- y' P7 o/ L6 S
  repeat num-people [
2 R4 @$ U1 \" N% _  W    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)" v2 p1 O( D: C& a1 |. F
    plot (wealth-sum-so-far / total-wealth) * 100
$ \: ?2 y; D4 G0 H    set index (index + 1), r$ I$ Y. G; _! x( g
    set gini-index-reserve- @' X$ C; W2 Q4 U" w; S' B
      gini-index-reserve +
& V3 n( q  U, W6 \+ z      (index / num-people) -: m* p$ {* t& t6 m' @, Q) r
      (wealth-sum-so-far / total-wealth)
: u" _6 B6 b8 ~7 [; {0 L& a& S  ], |* M' T5 V  c  _# z8 u! @2 z
& L/ E8 Z- ], x, ~. `
  set-current-plot "Gini-Index v. Time"$ o' j' F* }* q3 k
  plot (gini-index-reserve / num-people) / area-of-equality-triangle
" k3 E6 v5 h1 g: J: R, xend1 r7 L7 i/ v( p3 y0 G: `- g6 L6 y
to-report area-of-equality-triangle' ~) {( j6 C/ C. I8 r
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
$ Z8 y! d: r& u; }end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-9-14 00:05 , Processed in 0.022627 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表