本帖最后由 GJM 于 2009-12-5 21:43 编辑
' ^$ V5 C* |4 v5 A. c, s, y7 d0 F, e1 h
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去# ~+ `/ K' J: y& Q, o+ M( a/ y
/ V% d, y/ ^/ B" t. I/ b: R, c6 `
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!7 t+ F, z! U" ^0 D
# m# @# T6 x& D4 s! C--------------------------------------------
) @# U! i. B4 I {2 L9 g, a' ?* hbegin P_something arriving
3 f* ]6 X$ o- I. u% k) h$ m move into Q_wait& Q6 K5 @9 u6 x R5 o9 Q. K1 l# ^
move into nextof(Q_mA,Q_mB,Q_mC)- q0 A6 }' _: Z
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
6 d. k% C9 K3 r5 T0 K send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
7 |: Z- g9 s& b" w send to die. S, R/ j: P3 z5 b
end
+ u) o4 |% q& x8 r% u, a( v& o: ] 5 m- y+ I& R2 z6 ~. L1 B
begin P_mA_down arriving' z d6 r! H6 p4 ^ D2 ~$ F8 x$ B
while 1=1 do ; H5 G- B# S) k/ \# `
begin8 l. r5 r5 \2 f( K V, v
wait for e 110 min
; ]+ L3 A; R2 V# g/ j take down R_mA
% s( g9 c$ E8 Y# i: v wait for e 5 min/ [* h% \6 Y! T3 F, [8 y
bring up R_mA
; U1 e8 w0 R$ `5 I. n, N end
2 t* u* T/ T5 A8 pend( d+ e: d+ o" S: p% G ~3 r+ ^
+ y1 L, Z+ d: Q* R6 zbegin P_mB_down arriving
$ W$ w7 z* Q! f while 1=1 do9 q$ B/ G, }' R R6 p; w
begin
- b5 Y/ I$ b1 y% y wait for e 170 min
* Y) z( p$ V, Z take down R_mB8 B8 ]3 S5 r& I5 x0 m# w
wait for e 10 min" T5 \* h3 v5 L \
bring up R_mB- f; V! z( Y- B- _; m. x% Y- h5 y( q
end
$ U9 L1 m, S5 o8 Yend
+ r# f( x' w( V- y( Y2 b 5 M& `- h+ g% g
begin P_mC_down arriving
6 m3 D" Y, ~9 |9 T. [( Q while 1=1 do 9 v+ u0 E1 P2 x2 d, ^$ q/ Y$ ~6 [/ q
begin% u3 k7 ~5 G$ ^; u6 Q
wait for e 230 min
7 w. ?7 o/ a4 G7 R take down R_mC0 q/ u" J& k4 ?; _) D
wait for e 10 min4 G+ f, m2 R7 @; a
bring up R_mC
' O- A2 p+ j4 g3 W- R% c) `* U' B end+ {3 j6 }8 A: P; U; i
end I6 X0 M: M" G p& e; V: Y* q/ U8 s
! R6 q; Q+ ~8 \9 ^# }
begin P_mA_clean arriving
1 H( B7 [0 O# Y while 1=1 do
$ o( `% a/ X2 Q8 N& C begin
; X- T) K: E: {1 S! t% h wait for 90 min
) W% |9 P% l4 t: m" L% E9 N* T% T; V take down R_mA. c! |# ~: `# {. B2 O. A& n8 Z; o
wait for 5 min- h' w% v: e! I0 X, A. H
bring up R_mA
- v8 v* H: M' U1 ^ end
# I" a- ]) f! _& z4 u% J' Fend
0 p, [& y0 i4 e" F5 m( y1 A ( u' w6 e' [% B/ F
begin P_mB_clean arriving
$ G3 Q/ F- w7 P7 @ while 1=1 do
& ? u3 C! f( Y7 J, k begin
% ~. a" Z3 [: u. ?2 z" \ wait for 90 min
' `% C9 T# o- I. v take down R_mB
$ f6 g$ ]" P, S5 V# {! C' E3 j, w! t wait for 5 min: }7 Z* |% ]- @5 w- G
bring up R_mB
$ O# L% y( D% t" F q3 c end G ^- P0 M( }/ `
end
0 j5 v/ B3 l' w4 |2 @ 6 b ~6 r- h8 p
begin P_mC_clean arriving3 V4 g4 ?* `- |9 [) Y+ V* q( i
while 1=1 do
' S) Y x% g& j: _; v begin- q! \) f# M. V9 b2 O0 u8 z
wait for 90 min
R% j- B$ b$ K take down R_mC
& e$ y4 r2 s% A! \! V wait for 10 min
* C! W; M+ F& ^! ^ bring up R_mC5 e/ O3 |% Z- i3 m
end+ H$ I3 Z: {# l/ n r, h
end2 v* e& E4 K, ^1 e( R! ]% h
----------------------------------------- B. v7 A3 E4 j: F9 `7 {9 `* a
+ J0 m2 h o# U$ K1 {( B7 R
Exercise 5.98 B( o( c& j1 L1 M
1 ^$ m: L. q4 s: e/ k/ w
( E( E. V3 b2 M0 UCreate a new model to simulate the following system:- Y" f; Z: \5 o
Loads are created with an interarrival time that is exponentially
' S/ L( P2 A$ s! t4 P2 Gdistributed with a mean of 20 minutes. Loads wait in an infinite-1 ]. b4 {; M6 S& W
capacity queue to be processed by one of three single-capacity,
1 B: t2 }. Y7 S# `3 n F- I$ z; larrayed machines. Each machine has its own single-capacity queue
, r# S, q+ G7 V' d- y I: F, zwhere loads are processed. Waiting loads move into one of the three
) D: w7 F# f squeues in round-robin order. Each machine has a normally
- c$ z+ v) v+ G* |: @+ ]1 Kdistributed processing time with a mean of 48 minutes and a standard
! [, n! H7 H T( y! Rdeviation of 5 minutes.6 r( Q% @; g* S- u- V. S6 c- Z
The three machines were purchased at different times and have
, q0 Q- K! K: q4 qdifferent failure rates. The failure and repair times are exponentially # _* @1 o: B. ~ M
distributed with means as shown in the following table:
* @2 n: w7 B6 }$ c+ u, GNote The solution for this assignment is required to complete : c" t0 w) |; u+ [) H. k" E$ ?: I
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 0 f1 I% @6 C4 n) D& Q+ W q# W
your model.
# s1 F: m5 r8 V6 f' l
* Y- `- s0 |0 K5 G8 ?: y- C; lMachineMean time to failMean time to repair5 b5 y1 k7 q! B' ^
A110 minutes 5 minutes
K/ d6 A; J! r+ {4 qB 170 minutes 10 minutes8 r. B$ x; T( T2 S
C230 minutes 10 minutes
l) W1 y2 N" g6 ]. K6 R, H
3 d3 p+ b5 R" \9 Q6 K! TThe machines also must be cleaned according to the following 0 `; M- x% e6 E( z0 m. B- @2 E/ R
schedule. All times are constant: 4 P$ C& I8 o$ W' Z1 T J
* N6 A/ N- C0 ?& u2 ZMachineTime between cleanings Time to clean
! Z! f, \# o2 G" BA90 minutes 5 minutes
6 I* _9 o2 d6 x0 |B 90 minutes 5 minutes* U; F* e7 l3 C5 |
C90 minutes 10 minutes
' ~- ]$ d' { a7 u) U' [6 Q. B+ _; n( A# t s
Place the graphics for the queues and the resources. " j$ l7 a3 d! @: d6 S
Run the simulation for 100 days.
3 E& t) T- l% NDefine all failure and cleaning times using logic (rather than resource - g% F$ z6 L8 N
cycles). Answer the following questions:
5 E) D# P6 V$ ^0 K2 S4 p& ]6 `a.What was the average number of loads in the waiting queue?
4 o4 A+ R. I- b" n: Pb.What were the current and average number of loads in Space?
. Z; ~ N8 _: N* LHow do you explain these values?
6 Y+ F3 R+ U4 U1 P" B9 |& O |