本帖最后由 GJM 于 2009-12-5 21:43 编辑
$ a( X! i5 P0 Q8 { C1 O
4 l3 s: E" v4 w1 E R底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
3 D, J* _0 A" n/ c5 l7 f$ O* b$ q3 f1 A1 ?0 Q2 x, W
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!7 R( w7 g* \+ M
' f7 q! [8 e+ b2 ?; |+ e k$ Y--------------------------------------------
3 S' H; a I6 w$ o7 j8 Gbegin P_something arriving2 u" U4 p: F+ Z v$ h, s
move into Q_wait
% ]0 L+ t! o* q) G move into nextof(Q_mA,Q_mB,Q_mC)" Z/ R6 I; B4 D) s
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
' Z- r" l8 a8 V6 Q' t) P send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
$ p4 x: Q* B$ D" ^* v send to die( s J. \, T9 t" Y% z5 g8 X% Z! r
end
0 o+ N6 x+ z5 `/ k7 [ ! v6 {7 {4 V1 B: I9 ~ Y3 v
begin P_mA_down arriving
) u6 x5 {! d# U- O, ~1 H. o while 1=1 do - O& h, c+ h: V; c+ K; y7 k
begin
" V" N. \7 S" `, X: _' f wait for e 110 min& T; T s9 H' ]: B) }' R
take down R_mA
, y5 e* D5 E' D3 T wait for e 5 min
* G9 G' h, J/ M" n# r: i* e bring up R_mA
1 R0 R9 Q4 M9 o; @ end4 D9 ]: ^8 `4 X! H) N6 s
end
& z7 ?! c1 \$ s
4 e' g% I- m+ X. }begin P_mB_down arriving: g* ]6 h- s k' G
while 1=1 do
: D! j1 j/ p$ F9 P* b5 x9 b begin* b. t! D6 z) b( ?- K, s
wait for e 170 min
0 o4 C2 v7 p3 y9 x take down R_mB
% h4 p8 N: J/ `" s6 Y wait for e 10 min+ n9 ?# a5 ^1 Y/ s7 l
bring up R_mB
2 H' z4 O7 g/ l: y) v0 Z# j0 q9 h$ C end
1 X* P, F, \6 T' P" dend
* W" K8 p# N* \7 d+ @' t+ S$ e# r0 p0 \2 {
7 q2 {* m; A" X6 |" w/ u$ }begin P_mC_down arriving
' A3 P8 R4 x+ c8 k: c l while 1=1 do
' ~6 R" D8 D- _! v: T begin
( G- i/ M/ e: ~' D' E2 F wait for e 230 min
7 a5 U9 _, _1 v# l3 K0 W$ O; q- c take down R_mC
9 B9 Q) S" _' l1 N- x wait for e 10 min% w; w; T0 s( A# V7 x# Z0 z
bring up R_mC1 e' Z& q' n l* ^7 n: L
end5 w' Z/ b% k% w: ?: h
end$ J: w& x8 _: A9 E- K; C/ K
$ @: C! O, G5 Z
begin P_mA_clean arriving
9 n |6 P/ z# L4 H while 1=1 do
) ~( j" u' C8 y2 ?: i begin
9 b: ^3 }. N2 s* P$ y! x wait for 90 min
2 X7 v% T# R ~! @ take down R_mA
4 K8 y1 k" h! ~# C wait for 5 min
! E3 t' V# }$ v# S" {8 k6 v' U bring up R_mA
4 D8 v1 p) ^+ _# ]7 L) p9 K$ y end9 B8 G7 c! M' n5 [# V0 d1 R
end
( k: I, ^$ \+ _# K' _& z H
! H* N7 t4 m+ Z% E0 mbegin P_mB_clean arriving6 |7 `2 E# P# [& v
while 1=1 do
5 @$ c- X, d5 c4 S$ U7 D: Y, A( s begin. n# x! `% { S" \
wait for 90 min' {5 z* s! A* I) N) Y+ ]6 V
take down R_mB$ G: m" K2 s8 E& t/ E
wait for 5 min
9 A( O2 H6 |( n5 d# f5 b1 O& m5 H6 x bring up R_mB" J+ b% U; H; O1 N3 w7 f( Q
end
0 _/ w3 J3 k# a- C8 L7 k) Fend& S& t: |' u: J) ~3 M8 z
2 S5 f9 o& `+ U r' f
begin P_mC_clean arriving
" I; r3 E7 ]( s5 @ while 1=1 do
5 Y( L/ m8 s1 S9 S1 C begin
2 Y% @% `' I8 ] wait for 90 min
' @4 D$ g6 M6 A take down R_mC& o7 F. L7 R" O8 j
wait for 10 min
! B+ c( q5 s# W/ p" [" c- X& p: d bring up R_mC
# L% ?) [9 U+ V0 c3 [. S4 G end. k4 @; Z, n. @
end* ]1 Q4 h! m) w% u- \
----------------------------------------
2 Q5 I2 o7 g: r 4 d( M+ w2 L1 l% _
Exercise 5.9
* x- J% p9 x) S9 q k# D1 s$ m4 ]) c; e# W. o' X! E
, i6 F9 W. p2 ]. MCreate a new model to simulate the following system:) c3 V1 o3 f) H f2 w, Z6 T
Loads are created with an interarrival time that is exponentially
! P* ~" y" e& V3 f9 i2 N; k C& G0 o6 Pdistributed with a mean of 20 minutes. Loads wait in an infinite-# {9 O* Z) ^/ S/ t. \. J
capacity queue to be processed by one of three single-capacity,
1 n; z& P, K$ T9 \$ Tarrayed machines. Each machine has its own single-capacity queue
8 P& p# r! Q& j Z2 ?5 U4 g: ^; G8 pwhere loads are processed. Waiting loads move into one of the three 3 j) l' N1 n5 ]7 M* o; y) b
queues in round-robin order. Each machine has a normally 6 R6 _; t; U9 i, e5 i! a
distributed processing time with a mean of 48 minutes and a standard ! p. b0 m+ S3 ?; y4 m
deviation of 5 minutes.9 d9 y$ \) d7 m: p4 F7 Y( m
The three machines were purchased at different times and have
; e, i9 A7 b, t/ T5 e: }/ Ddifferent failure rates. The failure and repair times are exponentially
2 L+ T8 E9 ]6 ddistributed with means as shown in the following table:
q2 r) |7 p8 \Note The solution for this assignment is required to complete
9 k8 g* p# C" I$ |exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
4 a: @1 H0 g P& b- C. X( z# l0 o) wyour model.
" n8 J8 o1 B; K: z8 d0 b1 \# k8 V# F7 v" {9 Y7 P
MachineMean time to failMean time to repair
/ @$ Z0 }3 ?$ ?4 NA110 minutes 5 minutes
! Y4 n4 S6 t9 XB 170 minutes 10 minutes
# S& S8 y5 |1 G- J, D, Z! L ~' yC230 minutes 10 minutes
4 M5 ]* [" O" d
5 F( t1 a) O) d$ K! c; J8 |The machines also must be cleaned according to the following
* I, _$ }$ c+ v; L' Ischedule. All times are constant: , G( q' c# W8 X) v3 ]( c1 z
7 f* _. m( `3 j) q, d8 u, eMachineTime between cleanings Time to clean; D+ D+ [# m4 {( T" G
A90 minutes 5 minutes; ^2 g- _2 v( D% Y3 g( ^
B 90 minutes 5 minutes
0 V+ A: X. m# O2 y5 f1 ~0 E, G; }C90 minutes 10 minutes/ w- P2 b: X' ^0 v
+ C" u# ?8 } e" w1 ~
Place the graphics for the queues and the resources.
& C q2 Q0 h9 ^1 Z% ?Run the simulation for 100 days.9 q% }& f% R9 s' _. Q
Define all failure and cleaning times using logic (rather than resource
" H2 V! c: _4 ~/ p# Q) gcycles). Answer the following questions:
8 A5 U5 Q% Y; ~1 Y5 |# i6 Ta.What was the average number of loads in the waiting queue?
7 {$ X/ {4 m4 t2 g& C# Gb.What were the current and average number of loads in Space? & V* d4 f2 k2 s, N' ]
How do you explain these values?
" d9 a0 I# C/ c- }" _ |