本帖最后由 GJM 于 2009-12-5 21:43 编辑
) G, N% f/ @; C% s3 ~2 g0 y8 v0 o# r7 p
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去! {! a5 s' Y# B# L ~, B1 y: n
8 q6 \# R; v9 Y& N5 Z" t* f不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!) o& G# u2 |/ ]/ G) P" t1 X, B
$ V+ }, h+ b1 Y--------------------------------------------
. T! Y6 t' o5 b4 L [begin P_something arriving
3 n1 q" Y- t) c& g$ Z" A3 H move into Q_wait3 [; h5 Q% W. i! s4 X
move into nextof(Q_mA,Q_mB,Q_mC)
T' z$ V6 p5 v0 y0 q+ t! X use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
% N9 o# H% G1 U a send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)6 M$ O( Y/ d1 h" M5 G
send to die4 {6 X! k; N3 K* Z- i! i- N
end3 b; a% J4 H( y# ~
+ c: W8 y& ~$ w3 e
begin P_mA_down arriving" F1 B: F5 W" e0 P2 c2 j' i$ d
while 1=1 do 5 o; H) O$ C0 d% d% x+ L+ y; z
begin
+ Q1 X! k. G/ h$ ~* [: K# K' M wait for e 110 min+ B+ N2 a1 V* _) a' p
take down R_mA3 f0 {9 Z. u* h2 k
wait for e 5 min
+ R7 t$ Z: T# ]" x bring up R_mA6 ~/ ^5 d; e$ A/ O
end$ |& J2 D3 i' Q: j" j
end7 q3 u) N+ S5 Y5 u6 Q5 }+ M* J
2 e% `6 B+ j! z" |# ^# I
begin P_mB_down arriving" L0 i& I% D- j7 m" ~! E' m
while 1=1 do* G, m1 \( W& O1 Z" H) ?
begin
- l1 B6 q6 b, R4 u* c" c& P wait for e 170 min/ e* P1 _4 }' y4 V3 ]) q( T" v% F
take down R_mB$ W/ w" _( `/ w5 R
wait for e 10 min4 p3 L9 g& d( e9 ?
bring up R_mB
4 p( @ ]. ~6 @, Q1 f1 `5 A& d end
+ b) k/ R! I% L0 a8 j& hend
6 ~/ f/ Y: _5 g
& e! P, |& ]: Zbegin P_mC_down arriving
" q+ Q% b/ O$ O& D2 T' V6 t while 1=1 do
3 ]8 \4 m5 T0 L- x8 K; t7 S begin
2 U. Z8 ^& |" _+ @) _. Y# p0 }" B wait for e 230 min/ k: l. ~! ?; `$ l* x
take down R_mC$ h2 Z( X( B6 Z* h
wait for e 10 min" H4 I1 A( g& Q
bring up R_mC
h& ], k1 F' C4 [ end; |5 u: P# O: d" y8 S, Z
end
" U- W0 n9 l- |$ @ * R& P; z/ F8 [. _# m" y% r( h
begin P_mA_clean arriving
% t% R4 F& h' v" P& e while 1=1 do
. ?( s0 ~ }' N* h* U( d begin
8 N6 r$ T" n$ g1 k9 p2 t- i$ J wait for 90 min& M) M! \& I6 K7 n* }4 H7 \( b
take down R_mA
1 @( S& I L6 n wait for 5 min
9 j! S" E5 d7 L% z5 q' O bring up R_mA% z. M! p! b1 w( J- [
end
; S* t1 F* d) dend
5 ?) J+ ^1 `8 D2 s8 g + M5 W% j' k O9 |4 K) u p0 A; V2 U8 {
begin P_mB_clean arriving0 @+ _. l, ~5 k# z4 n
while 1=1 do
2 d1 D+ W ]. R begin
0 v4 r2 o) B" G wait for 90 min/ L. f9 D% f7 q7 ~/ Z
take down R_mB7 K T% v/ c! y# O' F0 S
wait for 5 min
' E( }& _9 z0 t bring up R_mB
' N& n4 j2 C1 l end/ S6 F4 U% b: G
end( c! ]) a: u. Y, B) w8 ?
$ j+ Q6 U; i' a" G, U
begin P_mC_clean arriving
& Y* s' o7 X% j% n: K while 1=1 do
; k+ D% u5 L' F+ x begin
2 G3 @* s1 v; k7 e8 h% s wait for 90 min5 m, X2 U# K- x7 k% K
take down R_mC/ G! @3 B! X; l
wait for 10 min4 h! I! }0 }' k7 T# i; R& {- l' t
bring up R_mC6 g) u" l0 O3 f* p
end
( O; \& ?; m& c+ E( F2 {5 L' @end$ |. M( j/ E, c2 b
----------------------------------------0 ?% b5 j. s1 b
9 P* \; z# U5 `( L. f7 ?Exercise 5.93 `0 s* t* C0 C- z" y& L
5 t* W3 a. R; r; }; m2 ^+ ]4 ^' h
Create a new model to simulate the following system:
z2 M( q. c5 K* _& gLoads are created with an interarrival time that is exponentially , d& o$ O! N4 Q8 U1 K0 @2 Y2 h/ J
distributed with a mean of 20 minutes. Loads wait in an infinite-/ ?+ D( w4 m8 {% a" I
capacity queue to be processed by one of three single-capacity,
4 h, G; u' ]* x+ r) z0 ~- [' |arrayed machines. Each machine has its own single-capacity queue 9 l: Q. D4 n/ J: ~: ?- W9 e5 E+ N
where loads are processed. Waiting loads move into one of the three ( i0 g6 x/ D% _$ @! ?/ U5 C
queues in round-robin order. Each machine has a normally . x; h% S! n5 _% }
distributed processing time with a mean of 48 minutes and a standard
1 G: K* O+ z2 N7 o3 h+ ^deviation of 5 minutes.
6 ?; W9 J3 t% B" w E, z9 }The three machines were purchased at different times and have 3 S0 R4 E! J+ |. Z; ~; _) t$ g
different failure rates. The failure and repair times are exponentially : j( c( i" R' v
distributed with means as shown in the following table: / g" @" k3 |" {3 Q' a7 u+ {
Note The solution for this assignment is required to complete
$ u; H& C: O5 J! J, T$ ~exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of [9 O! P8 A: q; v, r3 f+ F
your model. , x5 ^" j- B9 I) B3 v
+ d% g2 t' f1 b- f6 FMachineMean time to failMean time to repair$ Y) w' k! |/ q- {) p' E" c
A110 minutes 5 minutes/ P. M$ F' m% {
B 170 minutes 10 minutes) j0 o, ]5 N$ J) G4 i2 s m
C230 minutes 10 minutes" y4 f5 M0 l8 E* E2 H0 a( l! G
8 y* D8 W6 G$ D$ q; w0 r! Q3 |
The machines also must be cleaned according to the following 1 ^% S: e( \% C; a
schedule. All times are constant: 1 Z/ {$ ~- ?0 x: O" n- ~2 q
: s( ^# ]/ j+ T6 K+ [/ A9 s" g
MachineTime between cleanings Time to clean9 ?8 i6 [+ v1 z3 g6 ^9 c2 k
A90 minutes 5 minutes0 d* o& o- k8 m) E) n2 S |
B 90 minutes 5 minutes; b# C9 Q i5 Q( V }; ?6 }) B' f
C90 minutes 10 minutes. F3 f4 {9 U! B) {0 I' v3 a! \
* o0 C' d# K( s! ^
Place the graphics for the queues and the resources.
' Y4 u! }. P! f4 d" {0 s5 ERun the simulation for 100 days.$ M- V0 n) t) z3 u4 n# L6 ^7 w
Define all failure and cleaning times using logic (rather than resource
+ M9 k. e" g* F" Tcycles). Answer the following questions:# T& N" V* A, D5 ^$ d
a.What was the average number of loads in the waiting queue?, l3 A6 `, Y0 P) g Q9 j
b.What were the current and average number of loads in Space? 7 u! X" {4 N2 l" N
How do you explain these values? 6 K4 ]6 [/ Q4 W+ p
|