请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现1 w: I; U* c3 A+ e
globals( E$ E/ ?% l4 g d9 s1 t
[
. G& E: D0 L. b! v/ T max-grain
! w9 ^+ u9 Q) r
+ l' ?% l$ q0 j( K6 X8 C$ E]3 t; y/ R) V4 Y4 m" r
8 t3 i& O/ k2 m3 i* |
patches-own
8 i( B6 L. J) E% a[+ s) _: d8 m5 n+ S
grain-here ' l$ I# ?9 ^: p2 A) c _
max-grain-here
; F, n$ }# J' Z) p6 d& j]& r( ?* @( s* E
6 {) P" k1 i9 i9 [turtles-own
0 e7 W [0 U8 b# a% ?9 b! ^: E[
8 ]; L6 R2 ~, W- i4 h# t+ m age % ?; q2 g. c4 s( b2 z) I: T
wealth
5 g0 ^( _8 ?; M ^& E3 x* F life-expectancy 3 X- j; N4 k& o
metabolism : \# P; Y8 T& p& ?: x
vision5 W" B& E) ^3 u" S2 x
inherited % I: k k0 K8 Q
]; Q9 U4 p% E: g/ X$ @; t5 x
& s+ L/ B7 }! D8 D$ Z' k
5 j1 ~) F$ ~+ q6 Ito setup
8 Q; N! N8 m3 g ca' H! K/ j6 w+ y
set max-grain 50* w- |0 G0 A9 |- B8 n
setup-patches1 k) H+ V0 S$ H
setup-turtles
3 a7 c7 \$ h! a5 k2 J. O* h5 e setup-plots
( l0 h& o4 E1 r update-plots- r1 f c C, s/ X0 b
end2 w; C8 ]8 L9 k8 |4 H$ R" ?2 h
to setup-patches+ y8 I" r) U8 n- k! g% D$ j- w$ K- z
ask patches: l( } c% |( k! F' R2 J. D
[ set max-grain-here 0
J$ n0 S& o; ^2 h if (random-float 100.0) <= percent-best-land
0 n1 x. w2 d Q3 U6 c- ? [ set max-grain-here max-grain, E( l) h, k- Y. a* d& l8 N- y
set grain-here max-grain-here ] ]
% ?, n! z2 }! s* ?! `; x8 Y" g& ? repeat 5( n& P7 L+ \: e3 X+ z: a
[ ask patches with [max-grain-here != 0]; I* U; h6 Y0 K9 T# k
[ set grain-here max-grain-here ]
/ O W6 |* w+ ^- ]7 e7 P diffuse grain-here 0.5 ]+ ~2 e: G; @/ L3 \$ c
repeat 10. l# D9 ]8 J* {" u; L) C* }2 k6 o
[ diffuse grain-here 0.5] % P4 W) h3 V r! f
ask patches
' a1 E8 G& v0 O0 G3 x1 @ [ set grain-here floor grain-here ; o/ M5 _' s9 X% s* W- `7 P z
set max-grain-here grain-here . j. E+ Y4 X, C2 u& p; S- Z6 R
recolor-patch ]
" L% a/ N( j: K" {" r1 oend
+ X# B! P. k' {0 L w9 Bto recolor-patch [2 n% d: D! J2 ^+ \) M" \* h8 L
set pcolor scale-color sky grain-here 0 max-grain& `2 V2 Z& L- E
end
; v4 ~) y0 t3 l, J& l: Z( Ito setup-turtles
* X# K1 B {% L- Y set-default-shape turtles "person" ?) p$ J0 H: e: u8 X$ [( Z2 O% f, F5 q
crt num-people
- R& B" O8 ^! X' x2 e& L* l0 [ [ move-to one-of patches % u! p* ~& Q& l ] R+ B* c5 v8 h" P
set size 1.5
; y9 t; S7 ]2 y* _) l1 T set-initial-turtle-vars-age# {5 f) b' t \/ U S+ k! N2 }
set-initial-turtle-vars-wealth
$ S$ R7 z, l( @, }; l! J set age random life-expectancy ]
2 }' Q6 i0 f( }1 p recolor-turtles8 a) I1 |2 C4 a0 s4 X$ e$ P& r
end! m7 T+ L9 ^& T, f3 \
2 Q$ f9 t; ], b' `+ e
to set-initial-turtle-vars-age! d2 |- \6 j1 `: N. N$ C/ n, O! K
let max-wealth max [wealth] of turtles
; u- c) k) F0 t
7 x. o; w/ V) B/ {( a v ifelse (wealth <= max-wealth / 3)
# S% z2 g6 z2 F5 g7 {9 g. [! R [ set color red
, V: y" U! ^# S1 V set age 05 @/ W/ @, Z6 V7 `! g
face one-of neighbors4 ' C2 ?) u5 \2 _& H/ F: S) K
set life-expectancy life-expectancy-min +$ s) J& U8 `3 v7 M6 B
random life-expectancy-max ) C4 I# B0 r/ M O" Z2 ^$ n$ ?0 D
set metabolism random 1 + metabolism-low7 k* q: B3 I! e0 `% |8 }2 V% Z
set wealth metabolism + random 30
+ @4 ?! \" u; J' h. d+ v: t set vision 1 + random max-vision
. m! P: a# w# l5 Z set wealth wealth + Wealth-inherited-low ]2 B9 ?; H4 B. S) i+ Q
[ ifelse (wealth <= (max-wealth * 2 / 3))3 P( n4 Q; K) Y7 ?5 W
[ set color yellow
# q! Y# D* M4 D3 O set age 00 j* h# v2 L0 o+ _5 h' g/ N
face one-of neighbors4
& T' ^: W f+ x$ s% G( O set life-expectancy life-expectancy-min +# ^" k9 w4 B( |" A2 s
random life-expectancy-max + 12 k, X3 j# }8 p% \2 m3 [
set metabolism 1 + random metabolism-mid; n* i( E* ?2 h$ I
set wealth metabolism + random 30
9 X4 F. \9 E0 P3 }" m* P" b set vision 3 + random max-vision
0 x# Y5 Z0 P/ V5 Q set wealth wealth + Wealth-inherited-mid]
" H. r, [, o: g/ c# k3 r [ set color green h+ V- k4 g6 q
set age 03 E1 u+ X/ L+ `5 _
face one-of neighbors4 ( A! k$ E0 S9 l: o4 C
set life-expectancy life-expectancy-min +: w8 @- F7 \1 J8 r \; ~6 G. r
random life-expectancy-max + 2" S F8 S6 H- T2 Q4 Q4 [
set metabolism 2 + random metabolism-up
. m X% s' L4 U* d9 S& g set wealth metabolism + random 30
. N- {/ b6 w* W4 R$ ] set vision 3 + random max-vision0 ?! N3 S0 x8 f1 V3 y7 j8 l
set wealth wealth + Wealth-inherited-up ] ] 0 q8 _/ v& L5 }$ e) D
. g# x& M* x5 k9 `8 K: `end# j) P7 u. s/ I! X* o1 z
to set-initial-turtle-vars-wealth1 W# l9 u5 }4 `2 m3 ]
let max-wealth max [wealth] of turtles. g s# a% b8 G, Z, D
set age 0- c. m7 i) ^; W y, `# `
face one-of neighbors4 + ]* H! i5 @* K
set life-expectancy life-expectancy-min +
( c5 |; \: M! U random life-expectancy-max
: l9 |8 Z' k! H1 _: u; B set metabolism 1 + random metabolism-up! w! X: ~2 D8 Y! \
set wealth metabolism + random 30
% X0 d& ~: u5 g: R set vision 1 + random max-vision * F4 x$ g$ s2 Y+ x( M0 V$ C
end
3 K- N4 H3 b1 A5 ]; Z1 d$ l! U/ tto redistribution0 `: k8 y! P. h7 m' x, j6 L) J; ~
let max-wealth max [wealth] of turtles3 R. S; @7 q: h, I) H+ i
let min-wealth min [wealth] of turtles8 F$ s; w4 h. O# a# m
if (wealth <= max-wealth / 3)- W- B1 Q8 @2 x" r
[set wealth wealth + Low-income-protection ]
. E2 j; |. M a/ G: v3 N4 B" {end; X! k9 J# s- Y/ d) D) a
/ u+ e9 d$ l9 l" S/ J" n. L5 \5 Y, \
to recolor-turtles6 b6 J7 m5 p$ {+ n/ m
let max-wealth max [wealth] of turtles, U- J1 O4 ?# v' {- a* [$ Q
ask turtles
5 t A# S8 ~. a" h% ] [ ifelse (wealth <= max-wealth / 3)% ?( b m5 ]& q+ p) \& \
[ set color red ]
/ g; U/ ]) \6 q, Z* q4 ?: \9 k [ ifelse (wealth <= (max-wealth * 2 / 3))9 k6 y3 L y6 m' b( j3 h5 N
[ set color yellow ]( h$ _( x6 p+ ^9 ^
[ set color green ] ] ]
2 o ]) Z4 E! w! d5 ?2 H ask turtles [ifelse show-wealth?
) K4 {/ d+ G0 i# t+ K [ set label wealth ]
- F0 B# M& u* y4 G' |- ? [ set label "" ]]7 E7 O9 Q' l+ d a, j2 z
end
]1 k2 G+ U. b
) F+ R: Z* u( jto go: R6 i% u% W8 e8 C$ x2 V* }
ask turtles
! Q, @% T; @2 |- d [ turn-towards-grain ] ' f5 o0 O; C3 R$ U5 W
harvest
& U' N( V$ R- U% E0 b: n ask turtles
2 |5 R, z* A: L* K! K5 n. D0 A [ move-eat-age-die ], u5 q0 g# R" [7 [* _4 a! ~
recolor-turtles
2 R( _: l' b1 C5 ~/ u1 w if ticks mod grain-growth-interval = 00 N( [" D' o9 d" `
[ ask patches [ grow-grain ] ]
6 Q, a; K( h h9 O 7 N$ E6 Y# {* s; O
if ticks mod 11 = 0
, Z0 a/ u+ R; } [ask turtles
0 l0 W5 C ?- X1 |3 q [ redistribution ]]; x5 u0 G% g1 \- f
if ticks mod 5 = 05 c& i; F- Z) M0 q; T/ O
[ask turtles
# L9 k% @0 u6 y9 u* r# I [ visions ]]
1 v# n. {0 u% R O tick
8 s! A. _8 x* |" l; f update-plots L2 g7 D' r9 h
end/ X! d7 X: ~- B6 _5 k$ N8 m( r
to visions
5 D& N5 l: B( q set vision vision + 1 3 p* Q( w9 J" g7 {# R" B
end# i6 m X% s9 \% x+ B8 h
) O$ L& l, S$ g' a5 W5 d. M
* m& M; u+ ?( ?+ a0 p1 l, \6 ~* i% Z3 o- R6 d6 \8 L7 [$ p
to turn-towards-grain
2 p. ~3 }% R+ k- p, L$ Y set heading 0
# C! q4 M. x( i1 \: ` let best-direction 0/ l3 ^0 V# c5 a0 k8 y k( x' k1 U3 ~
let best-amount grain-ahead
1 X: I4 Y( M3 _2 l set heading 90
& z O1 o9 Y& S# f0 \" \; { if (grain-ahead > best-amount)
5 C- n9 V' x& y [ set best-direction 90- O1 R) M5 G& V; D1 K
set best-amount grain-ahead ]3 }( [! X- L, l8 J
set heading 180
% v$ r' i9 C3 B& [ if (grain-ahead > best-amount)
g5 @1 q6 z) R. u1 s [ set best-direction 180
, I7 s) i5 Z! Z" w1 R% y* f$ S% f set best-amount grain-ahead ]" H3 g9 {* s7 D! M7 K7 K. \
set heading 270
# Q% ^+ g/ U+ S if (grain-ahead > best-amount): t- z0 G) J1 L: F1 [! t. s
[ set best-direction 270/ r5 @4 J7 N7 s! |) w' l4 M
set best-amount grain-ahead ]
/ u$ l& v+ I" m8 A, p' c& A set heading best-direction* h& A- B# I: _+ s6 m
end$ N j& t% K3 F# O( V0 g. Z2 N7 n
. X: z! k- Z6 e+ F/ V. n* t
! _- u' z1 t G1 v+ N
to-report grain-ahead
6 F6 H4 w8 `/ h6 o7 H let total 0' Z T9 J" x. p- L) D/ D
let how-far 1
# U z' M2 Y) \+ J; m% f1 i repeat vision! G( l6 ?- E. n8 E4 M2 q# B# F
[ set total total + [grain-here] of patch-ahead how-far4 }$ \, _: N3 Q" c; r# I5 m1 A* o
set how-far how-far + 1 ]7 `% g1 U {* V6 C
report total
" } {- x3 y! E3 v- Qend
& o$ m3 ^$ J; N- j0 C7 W# S7 G9 }" p, @) [6 ^" U
to grow-grain
$ G- s. H- u; w2 @6 k: z1 Z if (grain-here < max-grain-here)
5 h5 ]" o, |; h9 u1 ?- h1 N [ set grain-here grain-here + num-grain-grown) [2 F- u3 G( o0 F8 _8 ]
if (grain-here > max-grain-here) 3 Q# ^! L. q% J& W( z
[ set grain-here max-grain-here ]+ z2 e5 J8 v5 V; d/ e8 v
recolor-patch ]
) \9 @5 b+ p$ D7 hend; z# x7 d N8 ]
to harvest# R' K8 O( R' j! P& G; \
ask turtles
3 h- L$ c- \$ I# l3 S& s% {( C* I [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
* ^. z: R0 R& \" h) V7 \ ask turtles% _ E# T8 ]- _ V
[ set grain-here 0
, M% |# G% ]% N p4 @8 _ recolor-patch ]! u, }4 v) r. R% i7 R5 ` M
; m& r: i8 x7 g" o% F# [end
- J& i5 r; R! m+ n1 e) j( `" L" P# S" `1 z
to move-eat-age-die % l: `! _/ p, O
fd 1# K! i9 v+ P0 T# c# E
set wealth (wealth - metabolism)$ Y+ J2 S. F5 r+ B
set age (age + 1)5 v4 c+ z, c3 Z
if (age >= life-expectancy); _! t9 w5 J1 C1 d8 Y6 q0 v
[ set-initial-turtle-vars-age ]
+ y; D3 z6 R" R9 f if (wealth < 0)
' n1 a- S% d4 ~9 N% y5 T- d [ set-initial-turtle-vars-wealth ]6 F# G$ G4 d; }( l- x8 ^+ P
9 E0 Z T8 c7 {$ B
end6 U' I/ Y8 |: T7 \+ A$ D$ W" c
" f! a$ U& ~+ z) E' f% u- \
& e2 ^0 l0 s5 F! w" wto setup-plots
- b- \$ z0 M8 F& h) ?8 c set-current-plot "Class Plot"
8 O$ V3 Z& s' z set-plot-y-range 0 num-people
6 f' F: Z, Y! p. p8 j set-current-plot "Class Histogram"' \4 z8 Z0 W \" W
set-plot-y-range 0 num-people
9 g* V r1 _ D) N, wend
3 [3 ^& s4 d, T) o' d# E5 L* B+ ^
* x; d% k, y" @7 y& v) eto update-plots
3 O. [ |4 e* ?7 F update-class-plot; Y! ~( l) f |+ H2 c z# o
update-class-histogram
' g- O: |3 U4 z: _. r# G& } update-lorenz-and-gini-plots
: R l! U* B3 x2 l/ Uend
8 B7 M' S2 E' l+ B: V8 j) f3 I. g p
3 B# O% \2 x+ W! O. v Xto update-class-plot# u& M# v: \- I! g2 D) g6 \; D
set-current-plot "Class Plot"
0 ? ^: A3 v: r& z set-current-plot-pen "low"& |1 x8 ?+ g [; E7 c$ Y W
plot count turtles with [color = red]
0 E$ A0 w5 i' j8 o. [3 B P set-current-plot-pen "mid"
7 s: ]8 V# P, w& C6 M) \ h* n plot count turtles with [color = yellow]! y* k- Y/ m+ G+ M
set-current-plot-pen "up"
# J5 \6 L+ s* ^# Q3 f/ N: X& U) G plot count turtles with [color = green]
" j( [- {/ O( Z: i7 u9 [end9 E- b/ o. Y1 y! X; ]" A7 A v' ^
5 p: p$ f! b' z, `5 a* b O) g: P$ _to update-class-histogram$ k; E/ k6 I7 e% \
set-current-plot "Class Histogram". q( O! t$ Q7 X" `8 E
plot-pen-reset. C+ V- @% t9 j( q$ Q3 G/ l) ^$ m
set-plot-pen-color red: D/ }/ k6 |- M, a2 F6 @
plot count turtles with [color = red]7 h/ o' A# ^7 W; v# Q ?8 P+ D, k. c
set-plot-pen-color yellow* U$ j3 A Z3 f" }) R
plot count turtles with [color = yellow]2 [8 @( L/ k7 J* x J7 ^
set-plot-pen-color green1 {$ v: ?! s4 x) U
plot count turtles with [color = green]
2 c0 T2 a# B8 m0 X: Cend
* r+ J, ^8 K4 \; `% Gto update-lorenz-and-gini-plots6 x. N1 E$ [, N* b, a6 ?
set-current-plot "Lorenz Curve"
2 Z- v1 ~" R' ]$ C" e' h clear-plot- T9 L8 y3 _; t# D
' I& q, c( }# \8 z
set-current-plot-pen "equal"9 _3 S0 w, o) Z( S2 t# H7 _8 R
plot 0
! w/ _4 z1 n: o) @9 N5 ? plot 100
% X9 W% z( b; {, }& p5 S* |0 V( s
6 W+ [, U. [# c# D7 e E- \6 O$ d set-current-plot-pen "lorenz"4 K; _3 l6 h" ?' |3 Q, X/ j
set-plot-pen-interval 100 / num-people9 B$ L% x& P7 ^! K, l8 z3 d
plot 0
+ C" M/ j( Z' t
/ ^! b1 Z, ^/ k! w, j/ p) Q8 ? let sorted-wealths sort [wealth] of turtles
: `5 x9 x9 y8 v# k8 b let total-wealth sum sorted-wealths# e/ ^! ]- i( w" G# s: d7 W
let wealth-sum-so-far 0
) E# Q0 ]+ p, d- Q3 P let index 0! I7 f5 t |& ]
let gini-index-reserve 0
* x) e' I$ _& Z2 K: O
# u, }! r7 q5 p, d repeat num-people [; u% X+ t7 ^1 n
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
" | b7 a8 G a4 C6 r( K& e& ? plot (wealth-sum-so-far / total-wealth) * 100
9 L: b) Y8 m. u) c! U$ x set index (index + 1)7 f/ W7 j" n# q* @* F6 E% Q
set gini-index-reserve
1 D: Z T# O, u' Z! |% p* G gini-index-reserve +
0 c# C" b! P) p( ^ (index / num-people) -7 ]' s* F P2 Q6 `% F3 E! n8 f+ `; y
(wealth-sum-so-far / total-wealth)
6 E4 Z9 b- J8 ?$ ` ]: l8 L" A' H# K% T9 O9 `* S+ v r
* T4 Q2 Q: _ w8 N! U9 {
set-current-plot "Gini-Index v. Time"
* Z+ @$ `0 z3 U- f) ?# r5 a- H plot (gini-index-reserve / num-people) / area-of-equality-triangle
( B. I+ u, K( Lend6 n: q: O# {( w M
to-report area-of-equality-triangle
+ k9 L+ h. }, Z4 z report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
% I6 q6 @! W3 C: }6 \ xend |