请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现7 {; R8 l+ |& c# J) [3 g
globals
0 n( r" l5 x$ N/ M, z! ~[* n- B; ?/ M+ A2 w, b& Z
max-grain
( l j1 w9 T- y1 d4 _: Z; I
( z& W9 ^1 x w" X]2 r5 Y& \2 c6 x& p: Z3 y' g3 r
. X7 y" s4 ^! G& }; Q% b$ qpatches-own
! }' Q E5 n: b0 d- F2 f[
% O8 w. M( f0 l grain-here ! x4 N$ N. t' r9 p# K5 ]$ d
max-grain-here 5 T% i* ]6 D& I+ p
]
% Z6 h# O+ S" w
' B9 z" c2 o, sturtles-own: R, c4 p3 X" t$ k
[" X# f8 O/ a' K; Z
age
3 X/ s7 H# D/ x, @" V wealth
' a0 c Z" r1 s3 m3 i A) \ life-expectancy - p& Q5 A, \6 j8 q7 Z; I6 f2 L$ ^* Z& {
metabolism
' C1 Z1 E: L& B" z, c# r& T vision0 L5 u; ]$ t% f1 t, H l
inherited
6 J, ^. d, ~: y! L1 x]9 D3 ]/ |# g* W
& G8 l7 Z* P# Z }' S' W
6 i0 K9 {3 g1 O0 o9 P0 G& p
to setup1 Y- N5 Y' A# s/ ]
ca
" x( P+ G; X2 f9 J5 e# B set max-grain 50
- u0 }+ K( o- E5 w$ I; S setup-patches1 y, F" e, M1 s+ T" `; U
setup-turtles" A8 w9 J" L7 L
setup-plots
- l; e1 F/ e F- Z5 | update-plots
3 k$ \& g9 J' f# s! E, Y5 q& lend
' }# e5 C7 G$ u2 c& fto setup-patches
/ ^0 i$ }0 b1 | d: s ask patches
$ a( {+ Q$ X* _! p% e [ set max-grain-here 0
+ W! z1 c" U2 c+ C! l if (random-float 100.0) <= percent-best-land5 |3 n0 F1 Q" `! L& h5 ~
[ set max-grain-here max-grain
9 T6 Q- U' M& v1 M3 e set grain-here max-grain-here ] ]; x1 n9 p, |! V$ T( m! O$ ]% P
repeat 5; f; m/ B) ?# ]- R+ I
[ ask patches with [max-grain-here != 0]0 b0 \5 S8 A' B; p
[ set grain-here max-grain-here ]2 {1 Y# B2 w% M$ Z' i0 _( N
diffuse grain-here 0.5 ]
2 g7 n. @* n0 l4 G repeat 10: F# b. r9 D, h7 e# u
[ diffuse grain-here 0.5] 2 A5 t; d4 X+ W4 N8 H! y
ask patches0 C6 i" c" u* P/ c6 K
[ set grain-here floor grain-here 5 ?8 Y9 Z, j$ y
set max-grain-here grain-here . H3 y. Q- B( P. m! o- J2 U( G
recolor-patch ]
% |/ X6 n8 I# { m j5 {end8 p: C% \3 K" m. A% U
to recolor-patch * @8 b& A9 u" }& i' k, L
set pcolor scale-color sky grain-here 0 max-grain& t& Z- I1 Z6 i4 w
end
% L, h' W6 L6 ?2 ^8 j) xto setup-turtles8 T; Q. n6 K5 t
set-default-shape turtles "person"
* v6 b* {2 F* G R5 V crt num-people3 k5 @. |( Y# |2 F
[ move-to one-of patches % g7 y P/ I+ `8 v
set size 1.5
/ h( p- ]/ t4 E set-initial-turtle-vars-age
2 v; }" ^, Z5 b set-initial-turtle-vars-wealth
7 D7 x+ d0 ]5 R4 Z, I9 [7 h set age random life-expectancy ]
2 x$ O! ^3 h5 y9 f+ b) x recolor-turtles6 g0 u2 @5 G+ L( m; U+ I# Q( {* {- ]
end
6 l0 M( r \4 x- K$ @7 s- H. m& u: j3 `& z0 c8 k: h4 F
to set-initial-turtle-vars-age: ^# X' E& O' }5 ~* g! A
let max-wealth max [wealth] of turtles* A1 Z8 y' M) m
7 t8 W8 @9 N, I
ifelse (wealth <= max-wealth / 3)
4 d$ ?# i/ A" `+ c4 z' k8 }2 \1 Z [ set color red
. F% W Q/ Z( L# h set age 0: i: U/ C# F8 y2 k" F
face one-of neighbors4 0 f8 z+ }* \4 Q' u& v: y
set life-expectancy life-expectancy-min +# g& k3 v" z/ F
random life-expectancy-max
8 \- w% g# t1 J+ W. F set metabolism random 1 + metabolism-low W0 [0 t& m( w9 j' e: A F
set wealth metabolism + random 303 ]$ t3 ]3 L" E. x% Q& c6 @
set vision 1 + random max-vision
# e& a5 s- n# q# S$ U' J- ~+ X set wealth wealth + Wealth-inherited-low ]% A h; M, M* ?, o# ]1 g
[ ifelse (wealth <= (max-wealth * 2 / 3))1 ~2 B% ^8 A O8 s2 K9 V' Y% S* W
[ set color yellow + X/ E/ [( j' V; t# }0 J
set age 0 S# @) S! q) p9 m
face one-of neighbors4 " f9 ^! }( l8 [* i j9 X# }" Q
set life-expectancy life-expectancy-min +
7 [6 B9 K: [6 E k1 ? random life-expectancy-max + 1
, F+ i. L4 ]- i, f/ A set metabolism 1 + random metabolism-mid
/ x- d" D& G* x8 `7 c; \ P$ P set wealth metabolism + random 30
+ U3 b9 c5 b3 O/ n3 t! g set vision 3 + random max-vision
$ @% o" G8 M: |5 y: k set wealth wealth + Wealth-inherited-mid]
3 L9 V+ W6 [- F [ set color green % {8 Y* B' c# p# k" W' _( w f
set age 0, ?% }# \4 c5 T# }7 i: X
face one-of neighbors4
: }5 z5 V+ J2 l! C0 o set life-expectancy life-expectancy-min +4 o7 h" Q; S8 I0 E8 z) \
random life-expectancy-max + 2
! a' B) H b6 h set metabolism 2 + random metabolism-up
4 V2 m+ v2 g+ a! f set wealth metabolism + random 30* ~* u3 u' c8 y: u) z9 ^
set vision 3 + random max-vision6 ]9 [) J P( ^$ [2 v! u
set wealth wealth + Wealth-inherited-up ] ]
! U0 ?5 U/ w/ s/ ]
4 s3 O0 c! z( c* d, O1 fend1 a& V+ c) C% k
to set-initial-turtle-vars-wealth
- u& P, d, R. ]4 e# ]3 _ let max-wealth max [wealth] of turtles
1 C: k' F, @, B5 Q5 y set age 0
. G6 h2 h, F1 e3 E* `/ R face one-of neighbors4 - _% Z" O4 n( O& g# Z. a) u
set life-expectancy life-expectancy-min +
' |" G2 q1 Q/ [ W7 ?9 ` random life-expectancy-max
. `& i3 Q2 i2 N1 Y9 m set metabolism 1 + random metabolism-up
& w1 r* N/ i$ u+ D: B0 a v set wealth metabolism + random 30
+ X: w8 E n9 b; i4 V set vision 1 + random max-vision , i2 L6 P" g6 ~- @, \0 j3 I
end- s4 {. N9 W# l0 X2 d3 I/ I
to redistribution
( U7 B. {' o: E6 V- H @let max-wealth max [wealth] of turtles2 z/ Y$ n0 @0 H* q* T$ |; F
let min-wealth min [wealth] of turtles
^/ |% H( |/ T2 iif (wealth <= max-wealth / 3)
) p3 E9 a8 H* D2 } [set wealth wealth + Low-income-protection ], U5 R; j( K0 A) _4 V. S
end
6 |, {, j1 u# q+ E- P, b' S 8 V' {3 j4 f7 |: c& n
to recolor-turtles, E, m! B- M- e1 t
let max-wealth max [wealth] of turtles4 t# A" Z. |: D# s
ask turtles
: x! J+ N" K% I- e [ ifelse (wealth <= max-wealth / 3)
4 L& r5 L2 V4 Z1 W1 w' f) v5 n- J [ set color red ]
+ ^3 s* \# w+ h3 f' f [ ifelse (wealth <= (max-wealth * 2 / 3))& o9 ]: a: P3 S: W* f% m
[ set color yellow ]
; H& ?. o' [& Y) Z+ d0 p( @$ f( \ [ set color green ] ] ]
. b2 v- p2 Y5 U& b: L/ n$ w/ _5 E ask turtles [ifelse show-wealth?4 T; a; r# x8 V |5 u2 ]4 |; s
[ set label wealth ]2 u& g# G$ j( Z8 B
[ set label "" ]]& N0 R" H- M4 b; N, @2 q
end
C" G, j3 H0 O8 z$ _$ @
3 ~ e0 B8 f: Nto go
% E4 ?8 @3 [. v) t5 C! } ask turtles3 H5 C1 n- _& v6 A
[ turn-towards-grain ]
" L7 Q( M1 O& d! X5 a) o2 C& `+ C harvest; P+ G1 |0 ~+ [' g- `8 d% \* p
ask turtles
]: l1 M% p/ J9 v- S [ move-eat-age-die ]
4 K1 {2 K( }5 j6 z recolor-turtles" R1 o- V0 u" g: Z0 c
if ticks mod grain-growth-interval = 0; \: E1 Y8 u) m, u' K3 N
[ ask patches [ grow-grain ] ]
; B& Z! R1 H, |- X2 r0 N
" K! I/ @. ~+ i$ i if ticks mod 11 = 0& H0 s0 R) _% }5 R
[ask turtles
& }; Y E5 N( t+ ^- ~* W- X/ m [ redistribution ]]$ Y+ A3 d2 v+ |, @
if ticks mod 5 = 0- D4 `7 |& X" X$ v% R9 D0 V) Q. n
[ask turtles! A* e ^: v0 E
[ visions ]]5 s8 o4 X) z% [* }
tick' O0 v+ Q0 h& w j' T/ p
update-plots8 Y- F3 I/ r- G: U0 h
end
: |2 G! |1 m' E5 ~' V4 _+ Hto visions6 |3 Q d, _' u' i) k
set vision vision + 1 0 d$ c4 u; S M; L- y4 h
end
$ I+ J! o8 i0 i5 M9 L* v- e. B
9 K& `0 N% ^8 u6 T* G! E
3 G; `9 W$ }: o/ J7 q
" S; X8 y* T0 F# wto turn-towards-grain
) |. d6 j6 }6 T, w, [6 h, I9 F set heading 0
2 h) W& D: C* |) a$ g f* x let best-direction 0" y+ M: c! K" L' A
let best-amount grain-ahead
4 O) \" @# `- R! l$ L3 {" O, A set heading 90
4 p0 k! L: O8 n) b% C+ y if (grain-ahead > best-amount) a4 i0 b1 o) S9 o: X- }' ], g6 C$ ^
[ set best-direction 902 J% o7 k+ U$ L0 ~
set best-amount grain-ahead ]# I. C# t. Z. s- M* Z/ }9 Q) W
set heading 180
, N' q. l) a6 S q if (grain-ahead > best-amount)
% d. M. E0 p8 b3 P5 f [ set best-direction 180
% G g2 R! I- Q- y set best-amount grain-ahead ]
% S( m) F3 L/ m J set heading 270
, g4 B, V+ Y7 B$ R9 W1 J if (grain-ahead > best-amount)
: O _* a; ~( A0 O [ set best-direction 270
9 Q- K" w+ `# @6 t set best-amount grain-ahead ]
; f5 f$ i1 I( X2 d5 x, e- f set heading best-direction# P$ w) w& P, Z1 a" z6 }! r) ]
end5 u | |% h+ \
) S1 ?! w5 f$ a4 K$ M3 \) c
# {0 O+ H- _& O* Y- c, O+ F. vto-report grain-ahead
+ x4 B, z' V' @" z! Z let total 06 u/ W4 _- p6 {- |* i, J: T8 t" w
let how-far 19 R+ a) q" W: h; N
repeat vision8 O3 A. Y. h% a U1 a v
[ set total total + [grain-here] of patch-ahead how-far
7 ]% j. R" q3 G1 @0 K' y2 ]# H" N set how-far how-far + 1 ]
0 p4 E1 p1 f3 }6 X4 ` report total7 R3 M( o/ ]# g8 U8 m$ G; h2 F+ @7 m% U
end
& x, ?5 A8 ^, A% W/ q- X1 g( D |8 E
: N7 B2 u4 k2 c6 m D% U8 |to grow-grain ( g0 T+ |3 m+ V" C W# r
if (grain-here < max-grain-here)7 q3 N2 l/ }) k$ T Q
[ set grain-here grain-here + num-grain-grown
$ L% H5 f P4 j0 H1 J! R if (grain-here > max-grain-here) a7 Z0 r0 q, \
[ set grain-here max-grain-here ]9 D6 c$ ^/ N- V$ X; Z) u) d: ?8 x
recolor-patch ]
6 y! `5 j4 K& a6 oend
8 ]8 M6 j, p& |, W* Fto harvest! s: `8 h; l' y4 T3 m7 j
ask turtles( J1 |8 _/ @; b a7 j1 \% |
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
/ j2 U6 B2 O3 S( D6 U ask turtles T( t$ W% B' Z8 @$ A
[ set grain-here 0! {; J" V. F K& \
recolor-patch ]3 d: j2 `7 v( k C3 {3 }, @" j
4 w0 V! s S3 T0 D" |
end
4 p: e; [0 Y. l- a- [4 H+ G" c# A0 g0 {: \
to move-eat-age-die 0 y! C8 N+ X9 x k% n
fd 1( x& a* x0 I- l& ~. z
set wealth (wealth - metabolism)
: l5 S0 T; ~. p/ b2 \( L; {) \6 T set age (age + 1)1 p6 ^9 a7 p0 h! g* V2 X" m
if (age >= life-expectancy)
. o9 B5 y, ?6 L [ set-initial-turtle-vars-age ]% [- Y$ a7 B9 f$ A1 N
if (wealth < 0)
% {- d8 O3 o: }/ s& w [ set-initial-turtle-vars-wealth ] e- a" d+ }- G( J! h
: R, E3 R# n, `end
^8 l6 \ ?9 L4 L$ |, I7 X
5 P( S7 u, f9 ?3 t1 q
* W2 R& |( e& R" ^2 X( e" wto setup-plots8 y# c$ `% }, r5 O0 l
set-current-plot "Class Plot"& F$ O, `6 D: a! V$ S
set-plot-y-range 0 num-people
+ T3 Y) x- t8 E- g set-current-plot "Class Histogram"
# b# @; h: `& f! W set-plot-y-range 0 num-people+ s( \' K: h; H
end
3 Y) }8 O# X- j; W/ ] @6 L2 `/ |8 W8 i
to update-plots
! v, ]# M& V' X( Y. v$ T update-class-plot
5 D6 K2 F5 k$ ^ `% h update-class-histogram
, Y' q' o4 R# ^* Y update-lorenz-and-gini-plots# O" H3 w; R8 k# ~; a" |3 \7 i
end
" i0 d1 ]; |; ^0 E' T5 F& k- t" G
9 n& t! E9 G- t. p6 J; C. |- Pto update-class-plot% o; j2 G1 `( _6 U9 X* {+ t
set-current-plot "Class Plot"5 V5 [1 b) d, i4 k. j' `
set-current-plot-pen "low"- }) t: T' N: A
plot count turtles with [color = red]$ \% I4 g! _# g3 t$ \6 ?3 D) |
set-current-plot-pen "mid") ?3 m0 H& D& G! O9 i0 M
plot count turtles with [color = yellow]
4 K9 C$ a `0 s set-current-plot-pen "up"5 F. A6 X, v, c* K7 X D( g
plot count turtles with [color = green]4 f- Y. ^/ O1 I8 @3 s
end
x+ j$ Q) a* z/ t6 c. J% t; p
to update-class-histogram
- O& `( C( h4 s2 U% N+ m* s4 c9 F8 v set-current-plot "Class Histogram"
' K1 i, [2 r! x# }- y( E# c6 E& |0 f plot-pen-reset
8 u+ y" Y5 B. a# Y+ I4 S set-plot-pen-color red
' s2 Q% ^. Q$ M* [ plot count turtles with [color = red]5 d$ V7 v5 r* `1 F0 h. y+ Q
set-plot-pen-color yellow
9 i* X# O! U, F, ?& O) }' m plot count turtles with [color = yellow]
0 k8 G' u7 F, D" [/ F) r! { set-plot-pen-color green
: f0 f' F( j+ x7 v+ T plot count turtles with [color = green]) O) l5 l# @2 x' M
end
4 m: n: S8 Z7 c* ]8 Rto update-lorenz-and-gini-plots# U/ a3 D7 S. e+ s. ^
set-current-plot "Lorenz Curve"& y; U1 X" L& s, |+ ]% P1 G
clear-plot( p3 H2 D, ~* z0 k$ x" T
' v. K& S# ^$ w2 R1 P
set-current-plot-pen "equal"
' M+ p. Y* y! O! G f- s, ]6 E plot 0
8 H. p$ z1 j6 W, E& c, L0 l plot 100* D( q u3 u' `" x+ l q; s7 M5 H6 h
6 L# L7 V* T/ D/ w0 s" w
set-current-plot-pen "lorenz"
2 j4 A( q2 z1 Q. R0 J: ` set-plot-pen-interval 100 / num-people* u3 ^6 \5 j+ n
plot 0/ J" ~. g( U4 }) j
. D( k' M3 S2 z
let sorted-wealths sort [wealth] of turtles
- _. a' K4 V( w ~- K* g2 s' [1 P let total-wealth sum sorted-wealths# J. S$ C1 Q0 S: J+ X
let wealth-sum-so-far 03 M; ~4 ]. o+ g& Y
let index 02 r: {/ C) l1 b- |! ]. x- Z* r7 L2 C
let gini-index-reserve 0
; H; p2 Q' X4 J u) H
8 i3 ^. J* q, R* t9 \6 K repeat num-people [
1 u% M+ H# Q, T) l set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
( [9 _; ^1 b; U6 _4 M plot (wealth-sum-so-far / total-wealth) * 100
% ?8 r2 @3 v3 T* P2 j7 ^) G set index (index + 1): b: d4 y" C! j5 D: a* l: k+ ?
set gini-index-reserve7 f" W% l; q2 b+ e+ n n
gini-index-reserve +4 G: e- B. \9 V2 w4 u/ Q
(index / num-people) -
2 v( g1 {) v0 T# ?+ L (wealth-sum-so-far / total-wealth)
: k, a* f% ]9 h, e7 f1 h# H: ? ]
1 a: P K+ m9 Y" `2 s
7 e% b$ f" o* n* T: j) ] set-current-plot "Gini-Index v. Time"* l7 P' M/ K1 k: G5 y
plot (gini-index-reserve / num-people) / area-of-equality-triangle' n% S! p, }: W. v
end' ^. L; `4 @( T3 ~+ C' }) W
to-report area-of-equality-triangle
' b9 \! B/ m+ X report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
* j' ?2 F- y4 e! ?6 o- B$ i; \end |