本帖最后由 GJM 于 2009-12-5 21:43 编辑 , A2 M$ o' ?1 R, i$ P' k- [! m4 O
( h' J9 ?& w, g. W* o8 S1 i/ q底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
" m9 @* p( T ], N( T9 H
O: D* q$ g4 j; _! b2 f不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!3 c0 v) x# q/ r, F7 S- }6 W6 w
% w3 c( F- r H% r8 F2 R6 h, E--------------------------------------------8 v& G1 U# O1 r3 J; C2 h4 C
begin P_something arriving
p4 h1 [- V) A Z: C( s7 B move into Q_wait4 G4 \7 u, ]! b
move into nextof(Q_mA,Q_mB,Q_mC)
& d0 u4 e+ o, X4 m) \1 I9 h use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min7 ^4 I( V4 W6 h* {0 V. L# g; d
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
) \( ~4 q1 c O$ ]$ {$ K send to die
; @8 |1 ^+ B3 t4 tend9 g% U* }# \ j9 |0 A8 S. q
* E2 ] |9 v* n- w% N; c, |5 w3 Pbegin P_mA_down arriving
( q/ D) |7 N4 m6 X7 C9 D while 1=1 do 0 |+ ?7 ~- y3 d- l$ `* o: M0 H+ r1 c
begin6 e4 [# d3 [+ S6 H
wait for e 110 min9 \8 v: D# K8 k6 K, D! n7 g1 Q
take down R_mA
# {$ k* k& [* v! T3 }, q wait for e 5 min/ G) j% }* J5 w( ^) u+ }
bring up R_mA
; W: x0 X+ g" x3 @9 | end
* B0 y# k$ ?8 ~5 Y" [end
A, V) {( P- s5 m: b ^& ^3 x
6 P( R+ U6 c8 Nbegin P_mB_down arriving$ F: V% o5 _+ t' n$ w6 C0 P
while 1=1 do r! n5 C* ^4 w" W- p' T
begin$ F o1 S; M- N& b
wait for e 170 min
; P- m9 u. x! ` D" P take down R_mB
4 G$ G3 o- w' |" V wait for e 10 min/ I, L7 s. ~* w4 @' X
bring up R_mB
1 o7 b, A) z$ s# B end$ k2 V. f) c) x
end
! S: d9 Z3 [. X- j4 |
$ n8 ]9 V8 X o! |2 G% P4 pbegin P_mC_down arriving+ C$ m I2 B% S; I
while 1=1 do 0 @7 R$ G, {3 Q
begin" G9 Z4 n8 ]4 k2 s/ S$ k9 w# \9 o# G
wait for e 230 min4 [( i* X) j1 R6 Z$ i3 _4 B2 }
take down R_mC+ s3 j9 r; }; V" x
wait for e 10 min4 s& m! |% f+ }, q3 f
bring up R_mC
7 o5 d# a* \0 U+ D) P end( z \) j' C; g) B) {
end2 H" l/ X6 x- b, {6 J
, b* i5 H& C3 ^7 p/ y
begin P_mA_clean arriving
+ Y' }! |% w: @" L while 1=1 do
0 ^$ {( z8 y/ Y( G- G* o- u begin" J3 ]9 X, H3 k% R6 Z7 a
wait for 90 min$ m6 A/ b5 v2 O- g6 K# A
take down R_mA
1 v z0 D1 `, o wait for 5 min" ^ u F( M0 ?+ `# y) x- j" }7 Z
bring up R_mA
4 M/ x5 p0 f5 T. ^, H# ~ end$ u7 r' o* T4 [/ g8 u- @" `
end: C/ l! f3 P- y1 Z5 H# c. ^
4 v" @. c$ H7 f5 [6 }6 I% Q( \5 ^begin P_mB_clean arriving* |0 {; J$ {- ^/ i0 K
while 1=1 do
$ G) T: s7 h6 p begin$ ]8 }! \! |2 l6 s4 a1 U- k) t
wait for 90 min
+ Z3 x9 s( W( I# G7 b% @ take down R_mB: W: M% Q I! m! ~/ D. |
wait for 5 min3 s# i6 A, g" y; Y4 z4 g4 r
bring up R_mB7 U1 Y+ I8 U1 k
end4 B( B8 L0 m3 l1 J' F; [
end0 U. O: A! }2 F X) k$ m& }
. [7 ~3 Q" ?$ z: ^* u; s2 lbegin P_mC_clean arriving
( I$ C9 p' y& T* h2 b9 U [ while 1=1 do- A7 F4 u: J) P7 g9 Z
begin2 s$ Y: o- J( Q
wait for 90 min
8 O& Z8 s* F) W9 Z1 v take down R_mC+ I& h+ _. ~$ l# _; A( R( R
wait for 10 min
: e; c! w/ ?$ K% {& t& L8 _0 O bring up R_mC
- L" G$ e0 f' M* ^8 S3 g end
3 y# P& y8 \! o- y) Rend) _/ @1 t8 _8 y' q0 [" V: A, ^4 d5 V
----------------------------------------. c/ s- d1 y! \. Z& R( S' B V
# g$ r0 b; ^* BExercise 5.9
9 Q3 ?. W. G. q: l+ L; h2 T+ h+ v5 H, I4 i, W5 \6 i$ ], }
" I( ~! z m$ Z2 x5 L' V5 Q. j; T
Create a new model to simulate the following system:* `( ]- k6 a8 Y4 P$ l/ h% M5 c
Loads are created with an interarrival time that is exponentially ( L* q& W7 G/ D( }
distributed with a mean of 20 minutes. Loads wait in an infinite-
# l& C' ~! M; S% ]capacity queue to be processed by one of three single-capacity,
& w: p2 m6 H2 e- x3 J1 [arrayed machines. Each machine has its own single-capacity queue
' z9 |5 q2 [* bwhere loads are processed. Waiting loads move into one of the three & J" Z" {' x f6 ~, U7 U6 V
queues in round-robin order. Each machine has a normally
2 y! i5 d$ Q* ]6 y/ Udistributed processing time with a mean of 48 minutes and a standard $ s# [- ^# u8 f" W2 ]1 U
deviation of 5 minutes.
7 p9 R% J E* P }The three machines were purchased at different times and have
+ L3 m* y+ d: H5 v& @different failure rates. The failure and repair times are exponentially 7 Y. e' Q' p/ O8 _# i
distributed with means as shown in the following table:
' Q$ V! T% H. pNote The solution for this assignment is required to complete . v/ O$ i5 G! f d
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
. S$ Y* Z* P! l: \9 p2 _your model.
$ I. O4 w5 ^! n1 h( d! N
$ U( l( M* W0 f2 g" ~MachineMean time to failMean time to repair9 @& X) k6 [6 @1 |6 d. ^& ]& f) W
A110 minutes 5 minutes6 }9 w+ z$ b( Q2 y, u% f0 @
B 170 minutes 10 minutes" v) C; C/ b( |* |- r+ G# Q
C230 minutes 10 minutes8 p: b' I, Y2 y4 x1 l
- m& a* G+ E* d X3 }The machines also must be cleaned according to the following . v; |* Y+ B) |" n5 Z' D# y
schedule. All times are constant:
. O* M2 [/ p J4 I+ x4 [, }$ m }$ p8 C! q) h$ z% A
MachineTime between cleanings Time to clean0 m% Y/ m! |; a) c7 q+ P0 y, A
A90 minutes 5 minutes
3 x: m: ^$ L/ T! j3 q0 R" R ZB 90 minutes 5 minutes! Z5 \0 r, b5 N7 ]! J' ~ S
C90 minutes 10 minutes/ A/ Z" U* e$ V5 d7 W, \
' y. u/ Q" O$ [' ^% ^- g
Place the graphics for the queues and the resources.
2 _' S. ^) W. q+ l9 X( rRun the simulation for 100 days.
" e9 O( H0 O' S' _1 q. hDefine all failure and cleaning times using logic (rather than resource
9 n9 y: G) k* B6 I) v& q, ucycles). Answer the following questions:
5 ]4 z. A! I8 _. I! Ca.What was the average number of loads in the waiting queue?
5 c# J% T9 U4 i, e% Q7 O0 p: ]9 Wb.What were the current and average number of loads in Space?
4 ~* [ [% W7 D/ qHow do you explain these values? ! b/ C _' D6 s4 U
|