本帖最后由 GJM 于 2009-12-5 21:43 编辑 / K1 F3 y3 ]/ Z! p5 Z1 k5 \' P
& D, T$ G. d- n2 `
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
$ W6 Z O' M! [) P9 j7 y7 q! h$ ]! ]) Z7 Q9 M
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!* C. r2 ~7 d2 y' a# R
3 d. V* {! U2 G" m9 p--------------------------------------------
0 E$ C1 }8 j" t' T" _begin P_something arriving
1 n$ ]% m% W( }- X move into Q_wait
3 @4 e! j% Z/ U E( W& i* W move into nextof(Q_mA,Q_mB,Q_mC)1 v% k; j7 ~" K; B
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min5 A( x: k/ R4 l6 A! x- J
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean); ^" f! l* D$ T- _; ^3 V1 q
send to die0 ~- Y& e& O7 ^. l/ I
end( f7 j6 \3 M! |' e. c3 Y# t
0 r& v9 r1 t4 p- n, ?8 f" B0 L3 Ybegin P_mA_down arriving
( Z8 o" B$ d w) T" y { while 1=1 do
, A* g9 B' d: P1 V v# S& S begin
# B# z& @. b0 G2 @+ {7 _ wait for e 110 min
2 L6 O* }( F! N6 p& T# @% e% C take down R_mA
" A& ?$ w$ ~ l( a( B wait for e 5 min
, ]' F" Y4 i+ F bring up R_mA1 W1 q( |: D- P( p
end' o2 q( @( G% \5 I; f
end
, X1 w8 l5 _4 n1 X$ R+ p
, T4 J& b6 L5 V3 ~7 ?begin P_mB_down arriving
8 D) I3 P8 L5 ] while 1=1 do$ ]( N4 Q, k% \! r; ?2 Y g
begin
7 ?" g9 k3 o. Q( k; j wait for e 170 min
/ ^0 v! _+ ]' r% a4 Z take down R_mB; L* J, P" f/ u) s) v+ h B
wait for e 10 min
) r# R" H7 ?: l6 O8 X0 Y bring up R_mB& i3 B% H( p/ T& J
end
2 U' I+ Z9 z" k6 V# _0 O; ?end/ G, ]$ H" U! C/ _+ U# L: Y0 o
4 _; }# n9 |/ v) lbegin P_mC_down arriving h) O) E: V( D8 J
while 1=1 do
4 b; r& C# [4 Q3 I begin/ B( u+ c) B+ L" ^
wait for e 230 min% s& P4 k- W4 o3 M
take down R_mC
6 ?# e4 O+ H3 ] wait for e 10 min
" X2 U7 a' z! H9 b0 { bring up R_mC
' o8 o# K0 p! ~7 t, l3 L/ s end
* r6 L: K6 L$ [% i% Hend* O m" i9 b0 S
: u: X$ Z5 E9 D- s
begin P_mA_clean arriving
- |1 b3 j( }' x9 s, c( I while 1=1 do8 Q5 _2 Z- `7 b
begin
* C0 n" a. }% [8 X! T K3 O wait for 90 min+ J N9 |, `2 h) d! ?+ d) O+ b$ L0 i; q
take down R_mA
+ B6 l/ L* N2 K. T$ p wait for 5 min
) f6 |2 e& {; {9 B1 X bring up R_mA$ X1 J3 [0 U3 R% M4 y0 W! o
end, S$ n' M" L* L: A' [: m1 n
end
3 y; r( b5 ]1 E
+ n1 [; W0 i: S9 D& g7 Ibegin P_mB_clean arriving% y; n% J9 ]6 ?
while 1=1 do
2 r' V' W3 T8 t1 Q" {/ ?% C. G0 m* N4 I begin
6 o3 S) l! S( I" S5 K0 T9 R wait for 90 min8 P c0 b; X/ R
take down R_mB6 f% F0 W# i9 n5 e1 y7 g
wait for 5 min
( ] y6 v9 i3 G/ T0 c bring up R_mB
# P# B4 a2 j6 S$ l0 y end
/ g& p7 [* h& v& J2 e3 H3 ]end
3 a4 r6 u3 t# |3 k$ r, |. K4 ]$ v- ?
. a8 N5 W- P, [6 ^begin P_mC_clean arriving
& ^; o0 a. E) w. W! T# G% R7 S while 1=1 do
) y' D- [" f& t) F begin+ ]8 _5 L' O& H6 ^; q
wait for 90 min
- Y7 ?, P5 z! e8 A% q take down R_mC
9 T* ^0 t! t2 K7 S9 P% z; ]) U) C wait for 10 min {/ [) g# T0 N, y+ r8 M
bring up R_mC2 t* v; a& N2 B, p' J
end
. i) C% d* L5 v3 cend
! Q9 |' T8 D' Y: V1 \) L----------------------------------------. v }# A: n: y6 L7 v7 s9 v
/ l/ {0 ~7 k1 _. E% c* M
Exercise 5.93 I% V; J9 l" {5 t) X
+ E5 h7 ^: I* m b
1 g2 Z4 S8 m$ d* f+ Q& x' l: s% V
Create a new model to simulate the following system:
5 ~% N6 u+ {* l# k& r1 RLoads are created with an interarrival time that is exponentially
) r1 c: L" C% J$ m/ Z) U Bdistributed with a mean of 20 minutes. Loads wait in an infinite-0 F- L. j8 k- z9 y! l* S2 |6 G
capacity queue to be processed by one of three single-capacity, ! G. Q" w* [ ]
arrayed machines. Each machine has its own single-capacity queue
8 ^0 M9 d5 W% F( n4 U1 m4 Twhere loads are processed. Waiting loads move into one of the three " ^* D$ y' U3 Y& C, w, B
queues in round-robin order. Each machine has a normally 5 a& X+ W) m% h6 O( o4 b
distributed processing time with a mean of 48 minutes and a standard 5 @. ]1 m4 M/ l1 I [: H$ C
deviation of 5 minutes.* G. W3 r! ?6 G* E
The three machines were purchased at different times and have & i. s, V& U3 n! S, ~. H
different failure rates. The failure and repair times are exponentially
. E7 Q5 x3 z$ y9 L- idistributed with means as shown in the following table: 0 s" u3 R- `8 W0 B8 r; |
Note The solution for this assignment is required to complete - P& k) G- ~3 n6 p/ }1 G/ e
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
. @# D5 r' }9 e, r3 J5 k+ Zyour model.
. V; h7 ~) J9 D& K, [6 U% d
, n/ I2 @, g' k* MMachineMean time to failMean time to repair
& {% ^ L/ _, GA110 minutes 5 minutes' q$ a7 d( S5 O* q
B 170 minutes 10 minutes
) N/ w% d) s1 WC230 minutes 10 minutes
9 j9 s% S% N M5 i' g' } j. P. Z7 p" W( Z4 z$ }
The machines also must be cleaned according to the following ( ?$ t c5 \5 a I- Z
schedule. All times are constant: " M! o" n) A9 R* \
o) T8 N) g' L( _, ]# W5 W2 }MachineTime between cleanings Time to clean' f% L! a8 N* @' y5 ~' n
A90 minutes 5 minutes; x, W/ R4 [! W# e
B 90 minutes 5 minutes$ q& n J% m7 h0 m% d
C90 minutes 10 minutes
* ^( v- G% M& f2 v) i* J/ r% F: h/ ]4 s/ \! x
Place the graphics for the queues and the resources. % e7 T8 N8 Y7 S6 H
Run the simulation for 100 days.
3 p, _* G, K/ N. W( {: G& tDefine all failure and cleaning times using logic (rather than resource
" n! v' t2 A" v. w& U) lcycles). Answer the following questions:
& M6 F; z9 n8 H% p% g+ Y6 D+ aa.What was the average number of loads in the waiting queue?
# {/ ?( K2 ]! i' N9 }b.What were the current and average number of loads in Space? 7 [7 y! B, S6 s
How do you explain these values? : n+ Q4 M. q! @" r+ m5 O
|