该系统为生产和库存系统,车间有4台机床,4台机床功能各不相同,每种机床只有1台。共有3类零件需要加工,零件按指数分布到达车间,间隔为10分钟,零件比例及其加工工艺见表1,其中加工时间服从三角分布(min)和常数,根据经验收据,第一类零件在到达工位以及 不同加工工位之间移动时所需时间服从参数为(7,12,15)min的三角分布,其余2类零件在到达工位以及不同加工工位之间的移动时间服从参数为(8,10,12)min的三角分布。加工完成后都要经过检验,检验时间服从正太分布,见表1,其中有两台检验台,检验台2有条件开启,如果检验台1的队长超过12就开启检验台2,检验台2一旦开启,要工作1小时,再停止工作,根据以往数据,检验合格的产品为90%,不合格的产品10%,要经过一台综合加工中心进行修复,可修复3种类型的零件,修复时间见表1,该加工中心需进行定期维护,每工作50小时进行1小时的维护,而且随机故障会有发生,服从间隔为100小时的指数分布,修理时间为1小时。经修复的产品几乎100%合格,合格的产品由2台叉车搬运到零件库,搬运批量为10件1批,搬运时间为20分钟,叉车1只搬运零件类型1和2,叉车2只搬运零件类型3,
+ X) L2 G: L$ w; j8 T 表1 各种零件加工数据
6 B% Y7 J7 X3 h( y; q% N零件号 百分比(%) 工序号 所用机床号 加工时间/min 检验时间/min 修复时间/min
$ S2 z, B, V9 n. `- P3 P) A零件1 33 1 机床1 10.5,11.9,13.2 N(8,42) 4
8 Q# ~5 x* l2 m1 H- ]0 j 2 机床2 7.6
& G; U: c$ e$ B7 [: G9 V: o 3 机床3 8.8 2 L% L: K) ^3 t2 U9 B; r
4 机床4 6,8.9,10.3 # T2 S/ z! ]8 x% I4 G
零件2 50 1 机床3 7.9,9.4,10.9 N(4,62) 57 D$ P. b% z3 ~4 B; D" s% L
2 机床4 9.9 2 `3 l* k* d9 f3 C2 n
3 机床3 8.5
. C$ _2 I# j: ?" y' G 4 机床2 6.7,7.8,9.4 6 g1 U- {! L- W0 e3 t
零件3 17 1 机床2 7.1 N(6,32) 8. h0 w$ U" z" a8 N" @
2 机床1 7.6
! M) P' w( w% e" ~( B8 C 3 机床4 10.2 $ ?* ^. b( _* F8 P9 Z8 b6 W* m
2 m% a0 Y4 E% ~& p& G 装配线对于零件1,2,3的需求,每次需求1件,服从时间间隔为Exp(8min)的指数分布,需求概率分别为P1=0.2,P2=0.4,P3=0.4,零件库3种零件的初始库存分别为Num1=20件,Num2=30件,Num3=40件每件产品的持有成本为每天每件2元钱,缺货成本为每天每件8元钱。
5 h2 v" x5 ^& Q# a5 h. j 运行仿真模型360小时(15天,每天24小时),仿真次数10次,试分析:
4 N1 h' @* b: c3 b3 M+ X1、建立该生产和库存系统的仿真模型;分析系统生产效率,各工位利用率等性能特征;
* F$ F( `6 S" J. }9 X2、3种零件生产周期和总体的平均生产周期分别是多少?
7 B3 `4 h+ w1 l" T5 g* c0 p$ _3、求各零件生产节拍及产能(进入产线到检验合格)?
. }) F; O% l7 |4 g* I1 f' A0 Y/ I4、计算每天储存成本、缺货成本的均值和置信区间?
9 t4 I1 ~5 k. P# e7 S9 P5 t) U& }0 r5、系统存在哪些问题,请根据仿真运行结果进行分析,并提出改进方案。
6 @1 v+ ~! a- K$ ~. V) p# L e6 a(注:可以改变生产计划,零件的到达时间间隔,投产百分比,叉车搬运的批量和搬运时间等,以求得最优的库存成本方案,同时还应满足,零件的平均生产周期尽量要短,各工位的利用率要高等,总之,就是要使生产和库存系统达到最优。只要认为是问题,且改善方案合理即可,同时对改善后的模型进行仿真优化)3 W- V( o8 z( b: B# k
6、在完成系统建模,仿真和结果分析的基础上,撰写仿真分析报告,提交仿真模型(仿真优化前后的模型,如果有分层,请将分层前的模型也一起提交)及报告。
5 h; O1 l# {# T: {6 F! A' } |