本帖最后由 GJM 于 2009-12-5 21:43 编辑
) ?5 u' v& m. Q4 |' n, V! Q; d: q1 D* R' H& I( j
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去9 F. Z# h: P P0 z
+ n* F) F8 _& v' y) f# W8 t
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
" L; J, e! T" Z* L0 ~$ q; b; |! n( n4 ?% j
--------------------------------------------
6 Q7 Z% Y {: tbegin P_something arriving* Z0 r2 |% ?% j
move into Q_wait
/ C. V; J$ q) ~- u: V3 ~* j+ l move into nextof(Q_mA,Q_mB,Q_mC)
: F8 z7 P h6 R% a: D use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min# ?. r! M1 G' Y. O
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
& l4 F8 f) ]! {, f+ { {5 p send to die v7 y$ ~" m" h# f7 v! H
end1 s: N. {7 M3 M
: R) E, Y$ m) Y+ r. @
begin P_mA_down arriving0 u2 c% z1 b; a, S! }* [
while 1=1 do
! @1 r1 J/ i ?6 h# M) F begin
0 d0 h& v' D* G! t( Q) | wait for e 110 min3 c6 J& H6 b }# L8 A* k
take down R_mA
% E; y! L$ d( t4 M) ? wait for e 5 min' u3 `" x7 W/ I! z$ ^8 U
bring up R_mA
. ^5 u# r3 @9 d9 W end
) t' [3 z5 p4 h) a0 \# m# ^5 _" B: ~' oend5 ~! h- M, Y, u2 {! w5 ]
- u. p& B' t# c `5 o9 Y3 z) _
begin P_mB_down arriving9 v1 h- d9 S* m7 }
while 1=1 do
' } o: u% y4 v+ l2 R' q begin
' M5 s6 y5 \8 A+ L2 l wait for e 170 min
3 H3 v; n% A! @1 m# f take down R_mB' q- o% T* q4 V( p
wait for e 10 min8 K5 n- \7 F7 w/ s
bring up R_mB. V2 [: W9 ]# _6 g1 H" n4 Y
end
& z3 L6 S3 K+ ~! [end
% y$ L+ i2 U" S1 F4 S4 N/ T
5 q% {2 Q6 o' j% s9 E# A8 e8 Z: y' vbegin P_mC_down arriving& R9 V; h+ U, g+ ^# Y
while 1=1 do
4 \8 w, V# P: p6 r. L: W begin& u) @" K9 k% f% n
wait for e 230 min/ X, q# w! V& b6 D
take down R_mC
* o6 N3 a1 y5 i) \: _ wait for e 10 min
% k- r9 q. y# v- Y3 u# m& X bring up R_mC
4 D7 ^7 L6 O) c( K# O4 o end
/ ?7 {8 b$ f# w2 O0 @/ lend
! y0 O) F+ b+ u9 T! `: R 1 {! `5 s# M+ F/ k1 J Q
begin P_mA_clean arriving
1 G [' Z! s0 D' o. L0 w2 { while 1=1 do2 A U. C9 A5 T. v& G
begin
& Z( w+ F. Z& x( \" B/ m wait for 90 min1 Y$ D( j7 {7 ^- C
take down R_mA& G% T# I+ g6 f! W- Y. `( I
wait for 5 min
1 s5 K5 F7 z0 t. E bring up R_mA) G; j8 t# s: N5 f
end
2 _) b Q4 Q6 x% r) i3 Q7 wend
3 u% A6 M& o' c6 U k0 r
- |2 ^% ~% ^. Ebegin P_mB_clean arriving; p; `/ B! }( |' h4 G" T
while 1=1 do3 |& I1 F4 b" b
begin
/ Y' f; t/ r9 y, H/ W3 Z wait for 90 min X. U" j4 l8 [, ~! ~9 @" B0 ]/ C
take down R_mB
' N; _& k9 e- Z5 P wait for 5 min
# o; Z1 e! ]; {. ~* c bring up R_mB
* K# j* T. z+ C" X0 J" d! Q, S end
5 q1 m0 _4 t* Y# e9 K* n7 vend
, W" M4 `" |& O b5 C( q) ^
( I+ D3 a* f; i$ r( fbegin P_mC_clean arriving
* r- F( k/ n' j4 ~9 y while 1=1 do
# s Q& F$ g/ Z! Z& |. y, H) t$ t begin
2 J' a; ^' ^6 {. K8 A6 x" B wait for 90 min P1 `. L* h3 d5 c! k/ p
take down R_mC% i! X5 H4 |8 k3 M3 P
wait for 10 min- S0 x+ m' G# p A0 {$ k/ q9 i8 ~
bring up R_mC. ~* f+ t5 b# A t) P( y8 Y
end
& q+ V h" l# q( D' o' m# jend
8 ^8 a) x4 T0 Z' {8 Q( E& g- n- M----------------------------------------
' P" X) s9 Y* [% T( | g# a + G [9 z! F6 f j1 I0 T, _
Exercise 5.9& O; R s2 o. O+ s o$ y
6 e8 n$ u, |6 t, `
' }( D6 T# P) iCreate a new model to simulate the following system:4 @3 z" m7 P! P3 {
Loads are created with an interarrival time that is exponentially
* s" F: H: g3 P' v: Wdistributed with a mean of 20 minutes. Loads wait in an infinite-" ~) v* ]$ T0 Y! B f
capacity queue to be processed by one of three single-capacity, + i$ S) D4 ?4 p# L+ I( ~3 }2 }
arrayed machines. Each machine has its own single-capacity queue 9 F; M a2 J' s& O, c
where loads are processed. Waiting loads move into one of the three
: _* u/ \. K) {queues in round-robin order. Each machine has a normally
& X5 _# y! H; O) O* ^" s$ Bdistributed processing time with a mean of 48 minutes and a standard ( ]3 y1 [7 r+ {# k4 |
deviation of 5 minutes.! M6 P* @( A1 x$ h
The three machines were purchased at different times and have
' ^4 H# m, X z* Q3 I8 r0 M' Z/ |" Kdifferent failure rates. The failure and repair times are exponentially
- a' ^! x. r3 L& s+ I! T# |distributed with means as shown in the following table: ( J7 M5 G$ S( n
Note The solution for this assignment is required to complete # |+ s8 q& }6 g$ d% Q
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
3 o Q7 P+ l! }$ I* \3 \7 {3 b* B! dyour model. ' ?& E$ }' W, I% }
" E# ]& f, {1 o# E8 T7 A+ {) W
MachineMean time to failMean time to repair
# s5 ?: M% x/ fA110 minutes 5 minutes" \- x- z8 I$ u4 C9 a
B 170 minutes 10 minutes' i1 X4 [% S$ Q
C230 minutes 10 minutes
7 K1 Y% H! f+ j) R/ e% }
8 w A3 l) K( m# L. DThe machines also must be cleaned according to the following
" h4 z9 W& S' @2 v& J/ Bschedule. All times are constant:
- w, ?& ~8 _9 w) |) [0 i
3 w3 j9 D: h- LMachineTime between cleanings Time to clean, A- f- m1 b( L6 d1 I, L
A90 minutes 5 minutes
8 [3 X0 {! }6 W$ BB 90 minutes 5 minutes7 _0 V S2 @5 u
C90 minutes 10 minutes' n2 o1 { K: K T& G8 [
: I) h3 w3 z9 \) A, ^Place the graphics for the queues and the resources.
6 f: [& h9 W* W* ]# T* k$ ?Run the simulation for 100 days.
G8 Q9 G. Y+ Y7 aDefine all failure and cleaning times using logic (rather than resource
# f4 q& O9 R1 F0 G, p+ Xcycles). Answer the following questions:
& |: d$ Q+ k5 n. c, F# Ma.What was the average number of loads in the waiting queue?
! ]$ `8 O$ q# {, i( U! _% Xb.What were the current and average number of loads in Space?
. S% P3 \! Q4 P' B0 b4 h& _' e Y) H6 ?How do you explain these values? 2 {1 ]+ l- [5 Q' r8 c: x0 o
|