本帖最后由 GJM 于 2009-12-5 21:43 编辑 4 Y1 u4 u' R; n3 L
( U! A; O2 o/ B3 x) R底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
6 L2 c# N1 W% y1 q/ g/ h3 y: y
8 T6 Q& [2 o. r不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!8 M' a _. W' C! x5 u8 l. o
4 R& l: Q2 H8 Y& t9 ?9 B" G& } {
--------------------------------------------
# m5 N6 Z" C/ ^, gbegin P_something arriving
; \& _( i: j& N- |! R' }( c" ] move into Q_wait: Q6 G# `- `* X0 g8 v ^+ R; u" ^6 `
move into nextof(Q_mA,Q_mB,Q_mC)3 n6 a! ~. h- J& K4 g* F0 C) g
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min3 T7 D( u k- {( l
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean) { M) W% X# m: F, v) O2 [$ L1 M
send to die( b% K6 |. l; @ P
end
( Y6 U, f; O2 j6 I- G b
5 F" f; S: t+ b8 Y- M- d4 Ibegin P_mA_down arriving8 C: W8 d2 F$ y4 A8 c; b
while 1=1 do 5 [4 d; o1 ?( t5 u. C% Q" u9 j) `
begin
4 o4 z- s4 I2 o$ G$ C" \ wait for e 110 min
+ y7 E& K2 M# |& R" K) H take down R_mA. f4 {- ~. h4 K u' w; P& V& U
wait for e 5 min
5 D, W0 {5 r! K; a: R4 w bring up R_mA
" u; @" k* b7 J end
0 @% J2 m. P+ ^0 M/ d8 k6 b+ uend3 a* [1 d4 w& T0 q k: @* v3 j
" ^( d5 z; U+ ?0 R' z+ B( _begin P_mB_down arriving
$ q3 A( z. l: o, T9 M3 L; Q while 1=1 do
' G; P) y, _9 T( m& |$ l. x# \ begin/ L, |1 |7 E4 M- P/ `
wait for e 170 min; \; x4 O9 l0 q
take down R_mB
9 w; e. W" [7 d+ B& D7 s+ g* X6 d: G wait for e 10 min" a4 y( l9 z+ b. j( ]
bring up R_mB% W; a3 L' L/ {7 d: D) h3 V$ ?
end
2 h8 B) v% M$ U- vend
z" s2 b: R$ c3 W$ P9 Y A
: w+ p+ L2 R$ z; ]: Z' Gbegin P_mC_down arriving3 p' i; C! ~9 E) A5 G7 _2 h9 Q, v- B3 g
while 1=1 do
* P$ B1 M; R# n begin1 r# L& z: v$ L7 U
wait for e 230 min& g, c4 f6 G x" u \0 I. M
take down R_mC7 q: x, a$ P% s8 o. M
wait for e 10 min
) N7 u& b; c- a0 M bring up R_mC( k5 R' C! E: H0 v$ b% i0 k
end5 D4 E Q) P$ c5 l/ B, _
end
/ z; V- _( o$ g5 F: G8 C 7 [ J- r4 q0 I; I
begin P_mA_clean arriving6 @5 V! ?& R, H
while 1=1 do
8 ~5 y: o" g5 ? begin: J0 a7 a, ~# x8 V
wait for 90 min2 @, v8 L+ \) A, y( T
take down R_mA3 [$ f( P8 q9 _# `( l
wait for 5 min1 u: n2 [9 M, i. z; b- n8 S
bring up R_mA
$ p C' T% Q% J! [/ w6 [3 n end$ D2 P9 R! F0 J; M5 [
end
7 R2 S% p% y8 ^/ y4 D 1 u0 u/ @0 F: L
begin P_mB_clean arriving& L( E) O+ F# [2 F
while 1=1 do
6 b2 P/ e8 P9 M; w begin! D' [ G( z! _- C& i+ G
wait for 90 min) d' P7 d; Q, O0 H* B* ]
take down R_mB9 H) u/ R+ P) o+ q; `5 _" L
wait for 5 min, E- w: e2 w4 N$ O* ], ~9 j0 C
bring up R_mB
, l% w/ E& n/ Z1 O: R( C end; [4 Q; H6 K; U* } q6 H0 N8 f
end
& Z8 S M( i, [1 d , D' }# R4 ~# o+ u3 Z* M
begin P_mC_clean arriving
( }) c! S2 t& ?9 v while 1=1 do
' N9 ~, t) F8 e1 E* D8 ?- s begin. c8 d4 H; z" J/ M" D/ f. f
wait for 90 min3 b$ A+ S9 r: q5 H6 z
take down R_mC0 R L% L* S! P! |, k
wait for 10 min
" o# v! V0 n) c2 X# L bring up R_mC
$ T, E& C( b1 b3 U" k0 O end
- F( i$ r! C8 f" R, ^2 Qend
* j& G4 K+ X* x2 O1 L+ l----------------------------------------
) f+ R. @4 A- U2 T5 U# [# ]5 w
4 C8 v4 b% E6 |- I: kExercise 5.9% ]) S$ ^$ o) `! q+ i
, Z0 P( Z9 g: N+ }7 w
6 e: H& u: H% L# O, R: w" OCreate a new model to simulate the following system:- E2 p4 H' c! N& Q. t& b) a
Loads are created with an interarrival time that is exponentially 3 P) a+ S* a) S9 I M& ]
distributed with a mean of 20 minutes. Loads wait in an infinite-
+ {1 W. p3 i% m- G5 ?capacity queue to be processed by one of three single-capacity, 5 D0 t% ^6 C, ^* H3 u# N3 Y
arrayed machines. Each machine has its own single-capacity queue ) _' @. W- t5 X3 ?7 `
where loads are processed. Waiting loads move into one of the three + t. y! p- D' p% P, Z: V: W2 l
queues in round-robin order. Each machine has a normally * ] S4 k4 V) x1 u/ p2 X& k3 H% }
distributed processing time with a mean of 48 minutes and a standard 8 v' ?- R4 R3 V" R
deviation of 5 minutes.
! J/ }/ S& t$ ]; qThe three machines were purchased at different times and have
# G, d) r2 P! M+ ~different failure rates. The failure and repair times are exponentially 6 {/ Z4 \3 [; A$ |" {
distributed with means as shown in the following table:
2 y$ R- R' u' |. d5 W3 O0 I" K$ }7 ANote The solution for this assignment is required to complete
; ~4 A% p( b2 {4 a, B5 Vexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
$ g- s8 p1 K7 u8 _- X4 j3 Z! Y2 oyour model.
4 {6 H4 u' \9 X& i# ]. q" p8 k9 a9 Q. T/ x7 S. _7 S" c! q! C
MachineMean time to failMean time to repair) c( a' g1 L4 w, r- { ~: _) Y
A110 minutes 5 minutes
& |; S8 x7 y+ m7 MB 170 minutes 10 minutes
) P* R% b) U" J; l" `0 B: kC230 minutes 10 minutes, A! A K4 J& ~7 z3 d, B
& F- k" ~8 d( d$ RThe machines also must be cleaned according to the following ' J- ~2 |5 c9 N. H( i3 @, _
schedule. All times are constant: ( p9 ~, w* ^( s% s* V1 C
0 Z% r& C8 p! R3 q/ E- _ c) e
MachineTime between cleanings Time to clean' P; o# r7 f$ E3 m+ x/ h% f
A90 minutes 5 minutes
1 J4 O0 }5 A% ^$ ~4 o+ X1 x' o" s# jB 90 minutes 5 minutes8 [+ ~7 w8 r- _& K4 v) w1 |
C90 minutes 10 minutes
% W5 w! D! c: T( F; w
: k: E* o4 E* b7 q" {% Y6 ZPlace the graphics for the queues and the resources.
/ P0 i* Q0 d KRun the simulation for 100 days.% s! D4 o) }' B9 R* z7 P1 a S- P
Define all failure and cleaning times using logic (rather than resource 3 x; m e( |+ \' p) U
cycles). Answer the following questions:
! |$ u* V& A0 Y" D8 C. G' E, }a.What was the average number of loads in the waiting queue?% F1 J2 N* {. M- p! X
b.What were the current and average number of loads in Space? - r. {" q) k3 U a# K& M8 B
How do you explain these values? 3 r. X- l I x5 W
|