设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 6266|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现3 {+ i2 `- n7 @8 R; j% r. c
globals: h2 s$ w2 Z* O. M
[
1 e& H# @+ t: k: z' a  max-grain   
& A+ B, k1 _4 g6 V) O4 [8 L, t9 }  ]& ?6 J- s0 i+ e
]; H/ S" Q+ W- U. J  _! E" e

! b% o5 ]9 C2 L, ]4 Mpatches-own) g! u4 i4 e  v+ ^# }
[
6 R7 r6 n+ a- v1 g' h# x  grain-here      8 Y: [( A. h5 j* s) S
  max-grain-here  ) S* j  B& J/ d" p- l
]
/ `  c1 L) o% b
, K3 d- t8 @$ K2 T# U  y, h( C- Y$ o2 D! Oturtles-own, ^( v2 [: _2 `- ~
[
7 ^3 L3 W& J0 e  p, H7 k! J  age              
: t. m0 \/ p" B5 I, B* f  wealth         
5 v% ]9 S% _0 _" m6 I0 U8 ~  life-expectancy  - ~/ E. y& S: l: f7 s9 `0 d
  metabolism       , o! x% y' }- r" t: N& D
  vision* M# |9 u  b% i0 o- K3 k0 G" |
  inherited         ' p7 t6 I9 B3 I; N) N0 N; T# l
]! y& B; V) D7 ]0 g2 P
+ A0 L) V# Z8 B( u1 g0 `- C
: J8 m8 O! P0 f
to setup1 L3 e: `; w/ h) ~2 c/ a
  ca
; n/ F8 O! h) e  set max-grain 50
* v+ M' C- z: x( E) X' V! a1 g( J  setup-patches
/ X: ]$ z( ?0 G# I- q  setup-turtles
3 G9 Q. w* v. h# ]  i; `  setup-plots
7 p8 s! _( B  J! {' V7 o3 s( n2 W  update-plots; ?' b) O/ V. L
end
3 `+ n+ }3 r% _$ C0 z7 Z6 [to setup-patches
$ n. V" Z( _/ @; z) i$ O  ask patches
* Y, f2 q% H0 Y/ H) s    [ set max-grain-here 0
5 k2 r$ N- |3 C2 u; K5 N' i" x      if (random-float 100.0) <= percent-best-land0 h! d! X! h, x( \5 V0 |. v
        [ set max-grain-here max-grain4 u0 G+ b3 l4 }7 t. A& ^. R
          set grain-here max-grain-here ] ]* M  e! g, z, n3 X
  repeat 52 y# J+ A* ?, u2 |2 V! G
    [ ask patches with [max-grain-here != 0]
; e; t( h0 y$ T/ F# h4 U        [ set grain-here max-grain-here ]
; H* w; C( Y- F( _      diffuse grain-here 0.5 ]
% u" o0 p8 u8 l1 p% [$ }  repeat 10$ d9 j6 O( N7 p
    [ diffuse grain-here 0.5]          " V0 n5 G8 i; p! b
  ask patches
+ H0 M) _7 s3 _0 [    [ set grain-here floor grain-here   
6 \( C: o* M: Q" w+ s  q" a+ T      set max-grain-here grain-here      ; j: f9 y) ~, i# P5 H4 A
      recolor-patch ]
3 Q9 _9 h& |! @5 n0 N) ]2 `end8 T$ p% `& y0 `( I. P: [
to recolor-patch  ' q1 I  s& s- O, V6 |7 |! K
  set pcolor scale-color sky grain-here 0 max-grain
0 m8 h' s% h% kend
; g5 P" W+ ^2 k( U' Y' e5 Tto setup-turtles
& H; ^1 ~- N6 ]" h& [2 P) _  set-default-shape turtles "person"
' i) n( T9 V4 d5 V! K" p, x  crt num-people
4 H1 O0 z8 l. f; z6 k" g( J    [ move-to one-of patches  2 v- F) g5 b* X# m8 a
      set size 1.5  % C% b: V5 b( M  p# ?
      set-initial-turtle-vars-age
7 E# Z; Y* ~7 d- b$ z# x      set-initial-turtle-vars-wealth
, t  S1 I5 v& {# j      set age random life-expectancy ]6 ^, c8 Z  U) f, k& l' G6 {' O
  recolor-turtles
4 }7 D+ ?- V1 wend( R4 \7 A" n+ Q$ W
6 y5 U/ G: O+ h: I- f
to set-initial-turtle-vars-age
: k$ M* M) f6 p* e( N let max-wealth max [wealth] of turtles
: E! _/ w8 g& ~' D& V0 T+ t) s   
0 f1 Q9 c- z, M9 a6 P! U* T     ifelse (wealth <= max-wealth / 3)' d$ X/ L& Q: ~" ?) j
        [ set color red + d% N& K4 q7 B4 I# w4 g( p/ l" W
          set age 0- ~8 U; S9 {* M$ o7 r# P2 t  G
          face one-of neighbors4 1 Q! ^6 Y$ r6 t  Z
          set life-expectancy life-expectancy-min +; q7 p$ {1 T. j1 L* O
                        random life-expectancy-max ; C+ q' s+ d. w8 A
          set metabolism random 1 + metabolism-low
- L9 a( P: L. K          set wealth metabolism + random 304 z. ]8 t- m9 }5 Y
          set vision 1 + random max-vision
5 G: H$ G: ]# L. z8 g             set wealth  wealth +  Wealth-inherited-low ]5 L( _: i. g. J  E( _# B
        [ ifelse (wealth <= (max-wealth * 2 / 3))9 x; D9 d8 w' N) U
            [ set color yellow 6 w: z1 K; u& ]5 |$ m9 ]7 S5 o
              set age 0, d' a0 f, @- X( f
              face one-of neighbors4 / n( e  {' V+ o) c
              set life-expectancy life-expectancy-min +
3 X7 o. x4 J. y( I, o9 ]; Q                        random life-expectancy-max + 1
3 h/ E+ U9 P. H0 f: T              set metabolism  1 + random metabolism-mid! ?* W2 @" G9 l+ D
              set wealth metabolism + random 30! [, Z, X- \0 ?: u, M6 Y
              set vision 3 + random max-vision( `, h% e9 M" C; B- s; E7 i9 h
                set wealth  wealth + Wealth-inherited-mid]% S: X$ @- ], N4 ?* y  c1 S  n
            [ set color green
0 M) v# _0 t8 E2 C" b, `              set age 0+ |+ u  _; _( V
              face one-of neighbors4
7 r- o: i# O$ Y7 T# x" W) l              set life-expectancy life-expectancy-min +
1 {0 c. Q$ P# @( k5 a2 W" d/ D4 s# ]                        random life-expectancy-max  + 27 h  t5 _+ d1 R9 }! k* `$ W
              set metabolism 2 + random metabolism-up
5 ?" L& I3 d* p8 V% r              set wealth metabolism + random 305 z; s- ^2 _; |5 T" A; R2 o; W0 ]9 Z
              set vision 3 + random max-vision+ N$ i% ?* G4 A+ S( i8 E% {/ Z: g
              set wealth  wealth + Wealth-inherited-up ] ] 7 `4 D" B6 c6 C, ]* ]6 l: d3 M

" Y  c8 \; a3 I6 Uend" h0 |  b& T( m; @1 b+ L
to set-initial-turtle-vars-wealth+ D: v, S4 U& w; m5 ]
let max-wealth max [wealth] of turtles
0 b9 a- m5 R& p5 }( D  u  ]- N          set age 0
9 t' r9 O) Z7 ]8 M6 T, v$ l4 l$ T          face one-of neighbors4 5 i! A5 a8 |& T; ?" _4 |, u4 z
          set life-expectancy life-expectancy-min +
. `& P# Q0 u3 ^1 X                        random life-expectancy-max - w- Y) N+ N6 K/ B
          set metabolism 1 + random metabolism-up9 w2 G# \8 C# F$ m
          set wealth metabolism + random 308 k! A% T7 q( S  i
          set vision 1 + random max-vision
, T! G$ y9 a3 w  u: K9 `end
7 c- O- @6 N/ ~to redistribution
8 c; h+ e/ c# e$ z' C3 u" }let max-wealth max [wealth] of turtles6 S& f; q( v% M8 L
let min-wealth min [wealth] of turtles9 X- C1 c% V3 \5 N; X4 X5 {- K9 X' ?
if (wealth <= max-wealth / 3)' a+ t! U; g$ l1 K: ^* J5 g5 `
[set wealth  wealth + Low-income-protection ]
$ B, s: G$ {4 Q  C- e/ Gend8 X% \* |  u0 g. o& L* G  O
          & t* w; m' v8 ^+ {
to recolor-turtles
6 V" P0 E! |8 j  let max-wealth max [wealth] of turtles
8 a" k1 @! h0 a% R" U8 p  ask turtles
2 z/ _/ q2 q* ^   [ ifelse (wealth <= max-wealth / 3)
1 E) j: z0 _* C' d) n( E( d' @3 b/ x' ]        [ set color red ]
- U* \3 y& q7 i2 _: F2 u) f        [ ifelse (wealth <= (max-wealth * 2 / 3))
$ n% P+ W0 j6 w. v7 V! a, j            [ set color yellow ]$ g3 G  `# L# _% c
            [ set color green ] ] ]
  G' V0 b: F2 a# ?* @8 Y ask turtles [ifelse show-wealth?; L! t' I5 ^1 A( ]- j0 T  D* i
    [ set label wealth ]' ~. P1 E6 j( B9 n6 l
    [ set label "" ]]
) A7 O5 n' q7 y9 W1 i4 }3 J  Pend. K3 n# z: G4 F6 M2 w' O
8 q5 U7 B7 ]; ?  Y5 d$ s
to go
  H# n/ n7 ~9 Y6 I7 V0 ~4 R  ask turtles
' b7 e$ ^' a; h: k- `' O$ H& b* I! }    [ turn-towards-grain ]  7 Y% H1 B* M. J3 {, f+ ^! c& w# N
  harvest
7 j- X2 Q6 u, X& _% ^% i( j  ask turtles  U% J: U- p, c* d3 u3 ~
    [ move-eat-age-die ]; V( d( t9 i9 l+ X0 o. t- B
  recolor-turtles6 j% g2 s* q. ]* ~
  if ticks mod grain-growth-interval = 08 V4 z$ S: J- e) R2 U3 o& |5 h
    [ ask patches [ grow-grain ] ]
4 q2 V$ Z3 J9 u# U( Z- q2 E   
: B7 n5 Y9 v. P' ?4 K  if ticks mod 11 = 0& c5 q" J) C9 N. G% E1 X8 p
  [ask turtles7 b: h8 h3 X0 |6 @, K- `3 B  [
  [ redistribution ]]
' g' {& ?) ]$ l) M  if ticks mod 5 = 06 @8 F( S. j: ~: A. k- h% w- D
   [ask turtles6 ]5 H. K( Z( J% B" ?# d% L# L: Q5 @
  [ visions ]]0 R$ {, R+ E9 n9 u! l
  tick
, u5 Q- |% x( N, G5 c  update-plots; l- D" H8 f7 M" J0 V& v
end1 m. W5 t- u, |2 Q1 O9 X
to visions
6 I/ s: [: x# H% k" y6 q set vision vision + 1
/ i+ Q: }$ D( V0 B& Xend4 f  L9 S1 G! p$ c% ~0 T( v4 a
# e! h+ O( y1 v0 c  ?4 h* I: A5 T5 t

' t; Y: I7 |' z, U  H! Q: }& T; F4 S1 o3 _+ j
to turn-towards-grain  
" Y2 v. y" ], E  set heading 00 D& D/ l5 s9 i9 w( h( U5 Y
  let best-direction 0% H! b- t8 e6 \/ t  _6 K, V. Q
  let best-amount grain-ahead
$ B# ~, Q2 t3 z: Q/ w  set heading 90" F" i6 l! }, i( D8 Y7 q# ^
  if (grain-ahead > best-amount)
6 _% j; {0 ?0 ^, g( h    [ set best-direction 90: g6 A8 m9 _: X) p* b( Y: i
      set best-amount grain-ahead ]
9 v  b/ Y. H, Q5 b4 K, H) e1 E  set heading 180
6 y( i$ d0 f0 w5 Z  if (grain-ahead > best-amount)
3 U  R, h9 K/ r4 m8 X& T    [ set best-direction 180# k0 x% D: `% v" g9 Y4 c
      set best-amount grain-ahead ]
! D' y2 k2 Y$ z  set heading 270
: u# J, `. t4 ~1 n1 e0 a4 C% j  z  if (grain-ahead > best-amount)
0 Y# T( H' k/ V+ e    [ set best-direction 270  G# G. h7 L  b  U; g, d9 x
      set best-amount grain-ahead ]
. I' L% C/ }1 V6 i  set heading best-direction* ^. x) |( ~8 ?/ }% w: f  A( T
end. \$ S" w7 m! W" ]

5 h3 b, u' u* j7 ^+ k" H& o2 T* |' P9 |; ~7 V
to-report grain-ahead  
" W4 E2 O2 G/ [! i  v5 x9 i  let total 0
1 @' {' n- |, a& I  let how-far 1
0 m, u2 m1 ^9 X! P0 {& i/ T  repeat vision
7 L; m5 [! D- r! w# M$ x9 O    [ set total total + [grain-here] of patch-ahead how-far
( g# |! m0 v$ i1 |7 c  o$ t  Z/ @      set how-far how-far + 1 ]
5 m& K: k5 t, F/ i  report total: S3 {+ M# W( c2 n7 h
end
6 I' u' g$ w6 D: N+ [
7 P/ ~, q; n4 i0 m! ~to grow-grain
& n! }- M7 L2 T" j- `  if (grain-here < max-grain-here); S- K$ V. e7 Q1 L
    [ set grain-here grain-here + num-grain-grown
6 u( Z' K' P6 ]0 u0 Y  H      if (grain-here > max-grain-here)
7 Q( [1 E9 Z% `- H' ^% U$ e        [ set grain-here max-grain-here ]
/ q2 a& ?, q& T5 ]: F/ m: e* d2 V      recolor-patch ]
6 B1 d9 _" w1 E/ r6 L3 zend4 [. J/ e* |% m/ p
to harvest! e9 r( u; R# ~) \: M
  ask turtles
* @' M$ t+ Y! R: p& K  g) N' R5 u    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
1 k4 f6 n  U% Y% x4 C  ask turtles
1 `( G7 D7 t5 S% L( c' i    [ set grain-here 0& K; x3 o8 M# B- B( m
      recolor-patch ]+ |4 `0 _& V% N) y6 }' v% i
  
5 \4 l7 A) z2 l8 E: s" t1 v* xend
2 q# t6 x' X2 G) W2 i$ H2 p- }- y5 |. C2 i! Q* C
to move-eat-age-die  / Y4 [, p4 ^- ?/ \  S2 J
  fd 1! O+ P4 D- z: A3 r
  set wealth (wealth - metabolism)4 F& K+ D) t1 [4 S: i- C
    set age (age + 1)
! o7 H! C/ k! {' w- R  if (age >= life-expectancy)" k, Q# H7 k# \0 z& X2 ^: T
    [ set-initial-turtle-vars-age ]" M0 ?5 _0 p0 |8 W: b
  if (wealth < 0)* a' G4 ]# `6 K/ O+ Z  i& L$ x
    [ set-initial-turtle-vars-wealth ]* ~# R7 F" j& J6 [; ~: `' R
    5 Q7 _3 w" N2 H$ s- E
end
( |% D; T* M0 [5 S" |
' h( H5 D' y8 H, V3 Q
' o8 j2 J: h1 Ato setup-plots
9 U$ o+ _" Q7 P& {# u$ w  set-current-plot "Class Plot"3 }! _; A- N8 Z/ e0 ?$ D- o
  set-plot-y-range 0 num-people; i- S& M3 r) W2 O
  set-current-plot "Class Histogram"
* P8 F0 K0 j3 @5 O  set-plot-y-range 0 num-people
) ?0 F* m5 H+ B5 K: f8 nend
0 H! \" s; P7 {
- ?+ ~+ e$ s. ~! M7 e) Eto update-plots
; f; V6 {( ^% L! Q0 g, b  update-class-plot% u1 t3 f& ?! p7 P3 O
  update-class-histogram
( }' n& \5 P# i: A; d  update-lorenz-and-gini-plots+ V3 X$ R8 h3 M9 D1 w, H( o" d" s
end  ~0 V6 c8 ~# [: M) z9 D

/ Q" G. j0 r, i+ T+ ]) _" `. Oto update-class-plot0 o! `0 C9 A8 g7 j& ?; s
  set-current-plot "Class Plot"
2 X. n' Q/ s, T; W& \: S  set-current-plot-pen "low"; r# q- T4 n5 }' W  n% a
  plot count turtles with [color = red]& s% u1 |# S3 G/ [/ s
  set-current-plot-pen "mid"
) l8 c: t% P. f2 A" E  plot count turtles with [color = yellow]6 s1 c2 Y+ U# J9 U5 F( l7 Q
  set-current-plot-pen "up"4 m5 e4 S! V* r% E( E, Y2 v- p
  plot count turtles with [color = green]2 D% z- _/ A1 x
end+ ?, |( w5 L0 a+ @  {
( W- ?$ @* X4 e6 ~* }
to update-class-histogram0 {9 l7 B- w8 q/ Y4 V
  set-current-plot "Class Histogram"' K5 u; [2 {% e+ F+ l
  plot-pen-reset1 i' q" O9 I* Y  h
  set-plot-pen-color red
! y+ d; w% F# ^" G" v( g6 [. X  plot count turtles with [color = red]
+ u' _& R  {' }  set-plot-pen-color yellow
3 ]) U: A/ {! Y. H  plot count turtles with [color = yellow]
; C- t5 J9 F, D# O  set-plot-pen-color green  k2 L+ o6 q% J) M5 ]0 i
  plot count turtles with [color = green]
8 ]; j5 J# R7 Xend
& }# I3 Q  W  A6 J' |to update-lorenz-and-gini-plots2 `+ S4 u$ z* M  B7 d- S2 {
  set-current-plot "Lorenz Curve"
  T/ E& Z" [% x7 ~  clear-plot
# D: K/ W0 V& Y# C" r; E' P$ q; s* c' j" B# x- F
  set-current-plot-pen "equal"
  M( T; h( k9 N2 J, |6 j  plot 0
- A+ v, \4 b* c  S* J7 B% E  r  plot 100- X) Z* E3 ?5 [& g2 @- A+ G

* B5 J- S! J2 r$ S/ f2 o" E  set-current-plot-pen "lorenz"
2 X; X8 }% S/ m& S5 X: |  set-plot-pen-interval 100 / num-people
3 J8 b% R$ \$ p( w) y  plot 0
: e4 p7 W) c1 P9 Q" d( j0 b5 t1 r1 y8 d+ W) Q
  let sorted-wealths sort [wealth] of turtles
: T$ w' C! [/ T6 ~+ X  let total-wealth sum sorted-wealths
% Q" i8 V$ `% S9 c: o2 `, B  let wealth-sum-so-far 08 f8 j# f; q- u
  let index 0
6 R# c. z5 I4 A- Z$ Y  let gini-index-reserve 0
7 Z! h1 U7 @/ I* T6 `+ t! s; Q* J
  D9 o' o: b% d9 T/ @  repeat num-people [
5 a$ n3 {1 u& J, c5 M, j    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
0 d  x8 ^0 R; R    plot (wealth-sum-so-far / total-wealth) * 100
5 I# c7 c; m1 x" K/ a6 O( E    set index (index + 1)6 P1 a- a/ _7 W3 A
    set gini-index-reserve0 h( e0 p# ?; J* Z" E
      gini-index-reserve +7 s+ Q1 ]" o5 [& a4 {7 |6 E
      (index / num-people) -0 {( U9 F9 A+ P& |4 b. T* L
      (wealth-sum-so-far / total-wealth)
$ r+ P+ p: J) q; Q+ [" Q  ]
, O& [0 s' S# O1 f5 }
: G3 P, X+ _: J8 j  set-current-plot "Gini-Index v. Time"+ `/ K( H; {* r% S# D0 u
  plot (gini-index-reserve / num-people) / area-of-equality-triangle+ X4 L2 R4 D0 I. T. l
end
6 h; l( j! \4 ?5 cto-report area-of-equality-triangle
) u: l4 S+ w2 a5 b5 \) G  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
  s" p& @( z- }) r0 Xend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-7-12 17:29 , Processed in 0.012736 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表