本帖最后由 GJM 于 2009-12-5 21:43 编辑
S+ @/ F% K* R6 t2 B. b/ K
7 n8 Y! y5 k$ ?: ^底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
1 ^( ~9 u7 K5 M" R( U9 h1 g8 F( L2 a8 L& }
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!/ I! _4 d. `! o( D! k3 ^3 q \+ J
- h- o" t8 s6 O/ @--------------------------------------------' y. C b0 p% J, K! V& C) h* r
begin P_something arriving8 I o) s/ F3 {/ D6 [+ H
move into Q_wait
1 X' ?, Y: J' O% S move into nextof(Q_mA,Q_mB,Q_mC): D; u2 ?+ m) l0 e7 z
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min1 G+ K# b$ M6 `
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
5 t$ R$ ^: g+ B& i( p send to die/ W" ~8 \2 e! p/ [) t+ t+ \( S1 I
end
" l. J4 _! q. G! p0 i" V 3 v1 M5 }, ]; D9 R9 @
begin P_mA_down arriving
- F* d: e4 K8 d while 1=1 do
" _. A% X* E1 ~6 M" D8 ^5 s begin4 k7 z& ~1 R' t( A1 b! P
wait for e 110 min3 I/ q( O5 S' g/ u9 z0 y
take down R_mA
/ }3 J: | I. I1 @ wait for e 5 min# M# f3 H2 L7 {& a
bring up R_mA5 ?" E8 d0 x" f7 O9 q! _
end
7 E+ p! G% X2 t3 s6 _end
; ^' l& u3 J- U y! G1 }8 t) ? * w+ C# v1 K/ T3 F6 g- r: ?
begin P_mB_down arriving7 m( }; ]0 n. m( c3 c) L$ U V
while 1=1 do. ?2 q' R0 n1 s: p$ t7 k! h
begin
) n& e- T! E3 d wait for e 170 min
% q ^# x9 v5 t, C+ W0 f take down R_mB$ P: G" H( T: l' O
wait for e 10 min! R2 E9 G6 V; |, P5 w
bring up R_mB
; D5 S& ^: C N" ? end
1 N2 U: h! t" C- X/ v7 Q6 q" O) G b. C( uend" ?1 {1 k: V9 O( v* \- W3 u0 I5 z
* [5 l5 F$ y( l' L$ I; O
begin P_mC_down arriving
0 {# Y7 ~7 O8 e) i2 |5 k while 1=1 do
/ e+ B) g' o Y begin
2 _: z) E- G* U8 O& U wait for e 230 min
: T+ r3 \% S: j! a, k# Q! L take down R_mC
0 J! O9 H( Q4 R5 J wait for e 10 min2 E: r0 n& E8 `
bring up R_mC% Z$ c& T3 S9 C. I D" j
end2 J1 R( I: e/ R5 u! i' o! ^ @
end
! `. j$ q' ?1 q. V3 R0 s , i+ I; p& M* |: t! L
begin P_mA_clean arriving4 d. f5 o! F% ^5 T u# q
while 1=1 do( X1 C# F: u% C0 U* U7 H' r9 V' j
begin: e6 M/ v! \% I
wait for 90 min8 |4 G. z9 B& ?5 \9 I' _ y
take down R_mA3 n# I: R' Q3 ~' Y7 C
wait for 5 min
8 x- y- [, i. }& T* H. O) a4 f; ` bring up R_mA7 U2 Y' E4 O0 X" ]# t
end
* O6 E7 ?9 s2 i, y% \0 Q$ lend/ U8 G" Z0 w( f" J" l. ~2 B
5 n3 w- [7 m9 g, ~- k/ h
begin P_mB_clean arriving. t7 L8 j$ ~2 A5 T4 b7 Z0 [
while 1=1 do
" T8 j% o5 ]+ Y8 ~' ?) o begin6 I, w4 `4 K; \" O
wait for 90 min& p* @. q" X6 ?7 S
take down R_mB; P4 K0 Y, t9 s' h7 R2 c! ~3 w2 Q4 O3 x
wait for 5 min
4 @# P' I2 k/ H/ k% e bring up R_mB- u/ w4 l. f) Z) T/ Y0 Z7 K7 B- @
end
7 }7 e! ~4 A5 Dend$ h. D3 _ d& y$ `/ ]
2 l. N6 n, i6 Bbegin P_mC_clean arriving
4 p4 H2 i1 I1 P9 h2 J2 }" [ while 1=1 do
# u( ?3 G: P# g1 c7 o- U8 p begin
5 E3 v& w0 C$ S- |, i wait for 90 min
4 n( @ g1 Q9 D7 _7 D take down R_mC
* e, n' y# b/ J wait for 10 min
; ?- n; l% i8 ? bring up R_mC B8 q; T9 e( B t4 ]- ^+ f
end8 W/ ?9 P- g! Y `3 j0 ]3 X
end( r' e8 P7 h/ b$ V% K
----------------------------------------6 c9 K& b3 g+ `
5 M6 _8 j/ s$ M. U) R
Exercise 5.9: {# M0 z R5 E" b
) ^1 U/ u/ N/ A
$ R" k$ o, B0 e: X* H' h# nCreate a new model to simulate the following system:
. f1 ?& ~) k: A0 y) cLoads are created with an interarrival time that is exponentially 5 k9 j2 G+ P; p/ B) S; A d. f
distributed with a mean of 20 minutes. Loads wait in an infinite-9 O! U( ~( m3 {! u- ]
capacity queue to be processed by one of three single-capacity,
5 `" |. x; R; F: a# `. varrayed machines. Each machine has its own single-capacity queue
+ P, b1 M5 I# W2 ~4 M2 Ewhere loads are processed. Waiting loads move into one of the three
7 B c; r9 w% S: L: O/ l5 E" Gqueues in round-robin order. Each machine has a normally
' J! Y8 p, J: l9 j9 p2 A6 idistributed processing time with a mean of 48 minutes and a standard
2 v5 V+ R# k3 ^7 Ddeviation of 5 minutes., S. V: h, t8 G# N/ `0 K1 ~
The three machines were purchased at different times and have ! Y" j( w. E0 b7 K+ P% T# g
different failure rates. The failure and repair times are exponentially
& z, V3 L! Q: P6 x9 Cdistributed with means as shown in the following table:
9 i; x( ?. J5 ~6 U* _/ _Note The solution for this assignment is required to complete
0 e G; ~" T6 ], I7 X; }exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
: W2 _1 z4 q Y+ a% V6 G. m2 Fyour model.
/ w+ l; _* n) J1 x: c$ B3 K
( ~9 L3 w7 ^ ]# l3 h# i1 _4 cMachineMean time to failMean time to repair; E% q& p' J+ H8 u
A110 minutes 5 minutes
& r1 w( ? h. S% Z7 J, M2 jB 170 minutes 10 minutes
* q6 g& X4 x& z% ~% a% U( LC230 minutes 10 minutes
" B$ ]2 {/ _# p+ h" }. v- Y$ b+ o( P& H4 O: C- G* `. B
The machines also must be cleaned according to the following
! D- w' `0 b+ e8 R. v0 I, F5 `schedule. All times are constant: ' e1 @- I& n' ~
6 p+ |* S0 f& L( o2 c: O! @% w) f
MachineTime between cleanings Time to clean
9 S+ w- J& I: o! m4 R7 `A90 minutes 5 minutes
. s5 o( R% @% O, DB 90 minutes 5 minutes
6 w. M. Q" f7 q5 ]- r/ rC90 minutes 10 minutes- G, {% v5 l$ I6 A
5 G0 u% a1 o! Z- `% c; Q( }2 RPlace the graphics for the queues and the resources. ) O* |% T- G; ?, x( Y0 l
Run the simulation for 100 days.
9 u- }) J. ~6 S8 \* {Define all failure and cleaning times using logic (rather than resource 5 b3 [3 s3 X# i1 {* n6 @! z4 T
cycles). Answer the following questions:% m" ~) b3 k! v) }2 N0 X
a.What was the average number of loads in the waiting queue?
. u* Y i% m) k/ z, xb.What were the current and average number of loads in Space?
$ C& R9 r9 h: F1 SHow do you explain these values?
1 \2 A, I8 v/ Q |