本帖最后由 GJM 于 2009-12-5 21:43 编辑
1 ^( E" X' Z" z Z# s# o
2 _ O, w: G. P# u底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
( `. e1 Q; T- V4 v, b
$ w% E% _# j3 r$ E4 Z P' ]不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
/ ~0 e) n/ j; ?+ S+ s! b
& b# i( K% v; a/ q/ Z3 m! k: W--------------------------------------------
, @0 j# ?* o+ z8 Dbegin P_something arriving
2 ]1 l9 L; Y8 K+ a move into Q_wait ?# }4 X6 a, I O
move into nextof(Q_mA,Q_mB,Q_mC)
' V( R+ w! {4 x1 e$ L- P. a4 r use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min3 V3 p& U/ Q# q4 h+ f" Q
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
p2 ^- [3 |8 ^( y send to die; \( ]7 {: p% |7 E% F3 @, D. [
end8 p" o, _8 V, d7 J: F9 s
7 e, N7 r/ l: |- V: N2 c
begin P_mA_down arriving
1 Q+ y2 F& j8 G7 _0 @5 \5 [2 E! Y* m while 1=1 do % ]" t+ X' J) `; C+ V1 X, P
begin
7 r, |# {9 a, b wait for e 110 min( L# X& I7 R4 a( p) u9 w0 ^( Y0 ^
take down R_mA$ \- ]$ o* h/ F( ?& M$ e
wait for e 5 min
* Q% i+ Q; K( w! B! H bring up R_mA
9 ~0 ~- e9 b$ }5 T1 j7 a end
9 ?( t7 ~. f& r, K+ N4 z iend3 N" D" I/ ?9 s% J2 I2 F) r
. g3 X! s9 x+ f& p$ Fbegin P_mB_down arriving& L" S1 p8 z9 U ^8 u* L0 j* i
while 1=1 do
5 x: W0 ]$ g( d5 o+ L begin' j5 l4 G; v+ {
wait for e 170 min2 T9 e+ e6 z3 K% E7 U; s
take down R_mB3 C, g) s1 {/ d8 Q: B
wait for e 10 min
3 [$ m( t5 Y- q5 u# h2 g bring up R_mB4 ^5 T3 F) U" q2 g5 ?3 R
end
6 ?! a: L, r$ K. z& Cend+ d" c2 \* E& M! m
1 F1 c6 n9 {) k& }2 ^+ P/ Z
begin P_mC_down arriving) ?/ h- N$ n ^8 b1 J
while 1=1 do 4 o6 G! |: |; F2 s
begin
* j9 P7 U" |. v; L wait for e 230 min
# J! Q4 R u& n1 | take down R_mC5 T% L3 _0 i* X+ P( m9 s) m0 F
wait for e 10 min
: d8 X- F1 C1 L, s8 G7 w bring up R_mC9 j. H6 t `' s
end
7 i) b, ?# {' P$ g+ V n w% o! yend( @: P9 D' q' v
2 }8 \ g# ~- y: N I3 A) pbegin P_mA_clean arriving
# V2 o$ C6 k" C while 1=1 do
2 s- y2 a2 h0 E- x* b. t' v begin
! v' B4 Z; R* u* x1 G8 X" M% V- S wait for 90 min0 ~1 {1 S1 ]: s
take down R_mA" P: n& c8 p" i$ D6 q
wait for 5 min- X8 e$ @' J! P$ c2 @3 ]
bring up R_mA* H/ U5 t' X5 S! c+ J
end
, S; k y" F6 e5 Wend
* A- [4 S0 Q; E! j0 X& O
2 w) ~( b7 d& c* N/ a+ Q% wbegin P_mB_clean arriving
( O3 ~- M T' K/ E( r while 1=1 do
& t4 |3 E5 Y9 d$ g9 c2 |. J begin
2 w2 E& G+ d R4 V wait for 90 min$ w* ]& ~ z& [/ {+ H9 h
take down R_mB
4 ~0 W) u9 H$ w" A; } wait for 5 min
: ~& r' |% B4 F" n bring up R_mB
6 Q# L& O! j5 t# d- H N end
8 a& d- i0 L1 E5 B" e8 qend1 [. a) {# y: ^ s/ p, K9 N8 N
8 @8 J' ~2 @8 z6 x1 xbegin P_mC_clean arriving* _8 E+ b8 l$ i: G. n, G# ^ b
while 1=1 do
; o! F( ~; s: r% w# F; b# e: w begin: X5 F& E$ m; s& Y& ^
wait for 90 min
# v" z {1 B3 X0 q/ \* a take down R_mC
8 p6 _& T4 W- w wait for 10 min
8 q' |/ \/ H0 p% |6 Z; X bring up R_mC: q* C7 j4 N3 J) Y3 Z& {' p
end
R: v) F: l5 s4 Oend7 ~ t& A" X* |3 g7 q
----------------------------------------
( t1 c9 b& J: b- D6 W% |( e7 O; v C$ |
$ j7 h+ W! Y: F6 N8 n4 oExercise 5.9! M1 P& q+ ?% _" P2 N
1 L; o7 K% f' }9 H |! ^- X0 B. A8 Y8 m
Create a new model to simulate the following system:1 Y! G; t1 Z- t# g% R2 N
Loads are created with an interarrival time that is exponentially
/ ?$ X; j& q% o+ xdistributed with a mean of 20 minutes. Loads wait in an infinite-
3 [, e K* E* z9 C5 |- E/ @8 b( ucapacity queue to be processed by one of three single-capacity,
9 r4 C+ X0 b5 |: Q7 h: _1 f+ A4 P Parrayed machines. Each machine has its own single-capacity queue
' K) K7 S8 {9 B2 Y8 \# cwhere loads are processed. Waiting loads move into one of the three * p" U% R0 f8 j, k
queues in round-robin order. Each machine has a normally
9 M: J, C4 O7 H* ]- Wdistributed processing time with a mean of 48 minutes and a standard 3 j1 k' i M; n/ E( L% D
deviation of 5 minutes.
* ^5 M% D' x- J3 t7 [4 oThe three machines were purchased at different times and have
# ^. S( R/ Q. a3 P- Qdifferent failure rates. The failure and repair times are exponentially ( [7 I' Q9 ?' [9 k" r0 [0 y* R
distributed with means as shown in the following table:
" b, j$ Q9 ~! f6 R/ jNote The solution for this assignment is required to complete . [0 o% \3 i, I( S
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
. q6 X" Q) N1 {+ ~+ m! D+ Hyour model. * H' B% W! G1 Y' _2 t1 |2 o E- N6 ~
1 O6 ]& J$ ]- o5 A0 j
MachineMean time to failMean time to repair; a7 w. L/ G- K( t, W$ g5 y
A110 minutes 5 minutes3 C; t+ Q% T, Z$ q( \3 |
B 170 minutes 10 minutes( K' I2 \3 f* M% t0 T4 W! g
C230 minutes 10 minutes
( t) N; L4 w6 u c6 g$ |# F: L( V- Z9 e; D0 D i; q/ ~6 P0 w! i
The machines also must be cleaned according to the following
2 L0 r I$ R) Q9 Z Lschedule. All times are constant: ; K' D3 \+ s; J
! i8 s1 _& `+ }' S7 _MachineTime between cleanings Time to clean
( u- V# h5 @8 W5 N0 nA90 minutes 5 minutes9 L/ W) H3 u8 H/ \' v
B 90 minutes 5 minutes: p- N# {; z- Y
C90 minutes 10 minutes
5 I) q$ R) t% }
! `6 [9 }- m; m1 qPlace the graphics for the queues and the resources. `; r3 U0 Q, z( d5 O9 e* V# a4 k
Run the simulation for 100 days.: V% ~6 l7 I! \1 [ O! q
Define all failure and cleaning times using logic (rather than resource
& E* i1 U3 O* {cycles). Answer the following questions:
5 U( ]- P$ B+ o# R# ~5 u Z |a.What was the average number of loads in the waiting queue?
4 N& `) ?' S+ b1 X4 mb.What were the current and average number of loads in Space? , k. h& J6 G* H/ Q# w
How do you explain these values? 3 e d; k' G6 h L' M8 P
|