|
本帖最后由 w18819447261 于 2016-3-1 20:47 编辑 5 X) V! {4 D" X- ^) ^3 o
6 j2 @9 [# W, R+ X8 M, R! q
案例如下:
5 i1 S4 n0 G0 G 喷气式飞机的发动机需要定期检查,有问题的话就要修理。一个维修站可以维修下表的 7 种类型的飞机。各种类型的飞机到达间隔时间服从均值为 a(i)的指数分布,如下表,时间单位为天。有n个服务站,每个服务站每次只能对一架飞机检查与修理。例如,类型为2的飞机有3个发动机,当它得到服务时,只有当前一台发动机检查修理完毕后才能检查修理第二台发动机。只有当3台发动机检查修理完毕后,飞机才能离开服务站。各种飞可以进入任一服务站。通常,到达的飞机若发现有服务站空闲,就进入服务,而所有服务站均忙时,就排队。* D% ?% C7 ^, N% ~- E/ n
其中,两种是宽阔型(带星号的两种),其他5种为正常型,排队规则是:各种飞机混合在一起排成一队,先进先出。
" W. G: h( u {: p7 k& a' F表1:
8 `$ A% }1 @0 `3 E4 i$ ~ @7 M( R 飞机 | 发动机 | 到达时间 | 发动机 | 检查时间 | 要修理的概率 | 维修时间 | 停机损失 | 类型 | 数目 | a(i) | A(i) | B(i) | p(i) | r(i) | c(i) | 1 | 4 | 8.1 | 0.7 | 2.1 | 0.30 | 2.1 | 2.1 | 2 | 3 | 2.9 | 0.9 | 1.8 | 0.26 | 1.8 | 1.7 | 3 | 2 | 3.6 | 0.8 | 1.6 | 0.18 | 1.6 | 1.0 | 4* | 4 | 8.4 | 1.9 | 2.8 | 0.12 | 3.1 | 3.9 | 5 | 4 | 10.9 | 0.7 | 2.2 | 0.36 | 2.2 | 1.4 | 6 | 2 | 6.7 | 0.9 | 1.7 | 0.14 | 1.7 | 1.1 | 7* | 3 | 3.0 | 1.6 | 2.0 | 0.21 | 2.8 | 3.7 | 飞机上的每个发动机的维修数据如表1所示,处理程序如下:; D" k. M0 W0 g" l
1.发动机第一次检查时,时间为A(j)到B(f)均匀分布;9 v3 n" _) C7 Z! m1 \
2.决定发动机是否要修理,要修理的概率为 P(j)。如果不要修理,检查下一个发动机,如果已是最后一个发动机,飞机离开服务站;·如果要修理,修理时问为均值为r(i)的2阶爱尔朗分布;
" M) x$ l6 p" A3 ^) v z 3.修理后,再次检查,检查时间为A(i)/2到B(i)/2均匀分布,需要再次修理的概率为P(i)/2;
% M* F: W( E _2 ]. w8 o" w 4.如果还要修理,修理时间为均值为r(i)/2的2阶爱尔朗分布。继续这样进行直至此发动机通过检查。每次修理时间为均值为r(i)/2的2阶爱尔朗分布,检查通不过的概率为P(i)/2,检查时间仍为A(i)/2到B(i)/2均匀分布;飞机待在服务站的停机损失为C(i),单位为$10000每天,每天的总停机损失与服务站数有关。
x6 u4 {+ B+ w1 ` 假设飞机按预定函数的时间稳定到达;假设发动机能在设定的时间完成检测或维修。
2 f8 K2 U8 n1 {8 t6 Q 问题:
2 C8 o( `$ ?; K, `6 b4 z, `* F 系统初始状态为空闲,仿真365天,试建立该问题模型,: y2 t2 e0 d4 [# c. A9 a$ M* W* d3 r
并记录每种飞机的平均排队时间;
% d+ t2 w h# x 所有飞机的平均排队时间;
$ P! \6 ?. @3 L$ G9 @' b' t$ G3 G3 l 每种飞机停留在系统中的数目的均值;
: l3 C4 G5 G9 j) {# `( R$ j 所有飞机的日平均停留总费用;
& F8 w+ _0 b3 L/ |" m; r 并寻找最合适的服务站数n。7 h9 O$ L/ }% r4 ^
^" N. ?& n+ ~; N0 j7 [6 }1 y
% i8 E! z& E; ]5 f/ E |
|