|
|
本帖最后由 w18819447261 于 2016-3-1 20:47 编辑 2 p+ h& |/ v; D* j0 |8 M
' D" q+ h! B/ D( [! s9 I- a" C9 }案例如下:7 T8 ?' W/ ]. n! f+ j8 D- Y
喷气式飞机的发动机需要定期检查,有问题的话就要修理。一个维修站可以维修下表的 7 种类型的飞机。各种类型的飞机到达间隔时间服从均值为 a(i)的指数分布,如下表,时间单位为天。有n个服务站,每个服务站每次只能对一架飞机检查与修理。例如,类型为2的飞机有3个发动机,当它得到服务时,只有当前一台发动机检查修理完毕后才能检查修理第二台发动机。只有当3台发动机检查修理完毕后,飞机才能离开服务站。各种飞可以进入任一服务站。通常,到达的飞机若发现有服务站空闲,就进入服务,而所有服务站均忙时,就排队。
@& U3 w3 J4 Z; s5 m8 @ 其中,两种是宽阔型(带星号的两种),其他5种为正常型,排队规则是:各种飞机混合在一起排成一队,先进先出。
) E1 V0 ] @+ w& G9 j表1:
0 A+ }! y- ^ T/ O& e' V4 `0 R" `* D| 飞机 | 发动机 | 到达时间 | 发动机 | 检查时间 | 要修理的概率 | 维修时间 | 停机损失 | | 类型 | 数目 | a(i) | A(i) | B(i) | p(i) | r(i) | c(i) | | 1 | 4 | 8.1 | 0.7 | 2.1 | 0.30 | 2.1 | 2.1 | | 2 | 3 | 2.9 | 0.9 | 1.8 | 0.26 | 1.8 | 1.7 | | 3 | 2 | 3.6 | 0.8 | 1.6 | 0.18 | 1.6 | 1.0 | | 4* | 4 | 8.4 | 1.9 | 2.8 | 0.12 | 3.1 | 3.9 | | 5 | 4 | 10.9 | 0.7 | 2.2 | 0.36 | 2.2 | 1.4 | | 6 | 2 | 6.7 | 0.9 | 1.7 | 0.14 | 1.7 | 1.1 | | 7* | 3 | 3.0 | 1.6 | 2.0 | 0.21 | 2.8 | 3.7 | 飞机上的每个发动机的维修数据如表1所示,处理程序如下:
/ I: V+ D$ P: I& v) t5 g$ f. I 1.发动机第一次检查时,时间为A(j)到B(f)均匀分布;
" y* \4 t4 n1 R2 C6 _! B2 V 2.决定发动机是否要修理,要修理的概率为 P(j)。如果不要修理,检查下一个发动机,如果已是最后一个发动机,飞机离开服务站;·如果要修理,修理时问为均值为r(i)的2阶爱尔朗分布;, B' E) p1 i. w) S! y
3.修理后,再次检查,检查时间为A(i)/2到B(i)/2均匀分布,需要再次修理的概率为P(i)/2;
7 O( b, \1 v/ n6 T0 E; c5 e 4.如果还要修理,修理时间为均值为r(i)/2的2阶爱尔朗分布。继续这样进行直至此发动机通过检查。每次修理时间为均值为r(i)/2的2阶爱尔朗分布,检查通不过的概率为P(i)/2,检查时间仍为A(i)/2到B(i)/2均匀分布;飞机待在服务站的停机损失为C(i),单位为$10000每天,每天的总停机损失与服务站数有关。4 e5 L) L3 I8 f% O R6 ?2 F) t
假设飞机按预定函数的时间稳定到达;假设发动机能在设定的时间完成检测或维修。# @! o- ?& {! K/ [, R# V
问题:: q% Q# t F' N2 F8 b, e
系统初始状态为空闲,仿真365天,试建立该问题模型,. j, W/ @5 Z3 e7 F2 k3 q
并记录每种飞机的平均排队时间;
, q* M% o8 C, \ 所有飞机的平均排队时间;
) ~+ x# w" E+ }- w% p- x; p; L 每种飞机停留在系统中的数目的均值;
8 h( M" {+ }% T& ?8 ]! K 所有飞机的日平均停留总费用;$ L! \7 F/ L, R% }/ n( |
并寻找最合适的服务站数n。' x D* S- Y1 h O& w
# @+ a4 s4 H1 \5 K! @) b. _, j. b' x H# Q+ p6 d) G. q( V
|
|